ひび割れコンクリートのひび割れ幅がアンカーの耐力に及ぼす影響

住友大阪セメント(株	朱) 正会員	○安藤重裕	
千葉工業大学		中野克彦	
都市再生機構		田沼毅彦	有木克良

1. はじめに

地震等によりあと施工アンカーの近傍にコンクリートのひび割れが発生する可能性が考えられる.そのひび 割れがあと施工アンカーの耐力に及ぼす影響については、様々な検討が行われている¹⁾. コンクリートのひび 割れに対するアンカーの引張耐力を検討するための試験体は、予め母材コンクリートにひび割れを導入し、そ のひび割れ箇所にあと施工アンカーを定着させ作製されている.しかし、現場施工において、あと施工アンカ ーはひび割れのない場所への施工を原則としており、実状と異なっている.

そこで本研究は、先付けアンカーおよび超速硬セメント系注入式あと施工アンカーの引抜き耐力に及ぼすコ ンクリートのひび割れの影響について、アンカー施工後にコンクリートへひび割れを導入した場合のひび割れ によるアンカーに及ぼす耐力への影響を検討した.

2. 実験方法

表-1 に試験に用いた材料の物性値を、図-1 に試験体形状を、図-2 にひび割れコンクリート加力試験装置図 を示す.試験体は鋼管に打込んだコンクリートを母材とし、アンカー筋には D13 と M12 の 2 種類、埋込み長 さは 7da とした(da: アンカー筋径).

試験体の作製は、先付け、あと施工アンカーともに型枠面が アンカーの加力試験の載荷側になるようにコンクリートを打 込んだ.あと施工アンカー施工は、湿式コアドリルで行い、ア ンカー材は、結合材、砂等がプレミックスされたカートリッジ タイプの超速硬セメント系あと施工アンカーを用いた.

加力試験は、アンカー筋を定着後、1ヶ月以上養生した後に 行った. 養生後、図-2 に示す試験装置に試験体を設置し、ア ンカー筋への加力が可能な状態とした後に、鋼管の試験体の側 面から加力することにより、コンクリートに割裂によるひび割 れを導入し、試験体側面からの加力によりひび割れ幅を調整し、 その状態でアンカー筋への加力を行った. コンクリートへのひ び割れ幅は、0.1、0.3、0.5mm とし、試験体側面から加力を行 わずひび割れを導入しないものを 0mm とした.

加力試験における非拘束試験では、コーン状破壊を想定し内 径 φ200mmの反力板を使用し、拘束試験では、付着破壊を想 定して内径 φ28mmの反力板を使用した.

図-2 ひび割れコンクリート加力試験装置図

2 「私族に用いた内科の対応											
母材コンクリート					アンス	カー材	アンカー筋				
圧縮強度	₹(N/mm ²)	静弹性係数(kN/mm2)		圧縮強度_(N/mm ²)		静弹性係数	数(kN/mm ²)	ĸN/mm ²) 径		降伏応力(N/mm ²)	
	Average		Average		Average		Average				
27.0		25.5		69.6		23.9		D13	MK785	791	
24.7	25.3	27.0	26.3	66.5	67.2	22.2	23.1				
24.3		26.5		65.6		23.3		M12	SNB7	964	

表-1 試験に用いた材料の物性

キーワード あと施工アンカー, 無機系アンカー, ひび割れ, 付着強度, 先付けアンカー, ひび割れコンクリート 連絡先 〒274-0084 千葉県船橋市豊富町 585 住友大阪セメント㈱セメントコンクリート研究所 TEL 047-457-0184

試験体名 定着方法 /試験方法	定着方法 /試験方法	鋼管	アンカー筋	穿孔径 (mm)	埋込み 長さ (mm)	反力板 内径 (mm)	ひび割れ幅 (mm)	最大耐力 (kN)				付着強度 (N/mm ²)				耐力 保持率 (%)				変位
								1	2	3	Ave.	1	2	3	Ave.	Ave.	1	2	3	Ave.
C-CI-M12-0			4. ., M12 . ., 5)	-	- 84	φ 28	0.0	39.3	43.0	36.2	39.5	12.4	13.6	11.4	12.5	100	0.64	0.59	0.60	0.61
C-CI-M12-01	先付け	200A					0.1	31.4	35.6	35.7	34.2	9.9	11.2	11.3	10.8	87	0.57	0.53	0.58	0.56
C-CI-M12-03	拘束試験						0.3	25.3	27.4	28.7	27.1	8.0	8.6	9.0	8.6	69	0.43	0.47	0.45	0.45
C-CI-M12-05	(_{\$\phi\$} 21	(_φ 216×					0.5	25.6	21.3	23.2	23.3	8.1	6.7	7.3	7.4	59	0.53	0.49	0.47	0.50
C-PO-M12-0		120, t=4.5)		φ 16			0.0	-	-	-	-	-	-	-	(32.0)	100	-	-	-	-
C-PO-M12-01	あと施工 拘束試験						0.1	95.3	92.6	94.0	94.0	30.1	29.2	29.7	29.7	93	2.91	2.50	2.51	2.64
C-PO-M12-03							0.3	79.2	74.4	77.6	77.1	25.0	23.5	24.5	24.3	76	1.12	0.90	0.67	0.90
C-PO-M12-05							0.5	74.5	61.3	65.5	67.1	23.5	19.4	20.7	21.2	66	0.85	0.71	0.95	0.84
U-CI-D13-0		250A		-	- 91	φ 200	0.0	34.7	38.3	40.9	38.0	11.0	12.1	12.9	12.0	100	0.90	0.83	1.39	1.04
U-CI-D13-01	先付け						0.1	28.5	31.2	27.4	29.0	9.0	9.9	8.6	9.2	76	1.24	1.14	0.94	1.11
U-CI-D13-03	非拘束試験						0.3	20.8	20.8	21.7	21.1	6.6	6.6	6.9	6.7	56	1.23	1.02	1.00	1.08
U-CI-D13-05		($_{\phi}$ 267.4×	D12				0.5	17.5	15.1	15.9	16.2	5.5	4.8	5.0	5.1	43	1.11	1.19	1.24	1.18
U-PO-D13-0	- 12 あと施工 非拘束試験	120, t=6.0)		φ 18			0.0	76.8	86.1	70.7	77.9	24.3	27.2	22.3	24.6	100	1.71	1.10	1.91	1.58
U-PO-D13-01							0.1	67.9	64.2		66.1	21.5	20.3		20.9	85	1.43	1.35		1.39
U-PO-D13-03							0.3	47.2	52.0	51.2	50.1	14.9	16.4	16.2	15.8	64	0.85	1.33	1.04	1.07
U-PO-D13-05							0.5	48.6	33.5	39.9	40.7	15.4	10.6	12.6	12.8	52	1.55	1.44	0.96	1.32

表-2 加力試験結果

3. 実験結果

表-2に加力試験結果を示す.拘束試験において,C-PO-M12-01の破壊モードは,鉄筋破断であったため,ひび割れ幅0mmのC-PO-M12-0の試験は 実施しなかった.ひび割れ幅の増加に伴い最大耐力は低下した.拘束試験における破壊形態は,先付けアンカーではアンカー筋界面での破壊であり,あ と施工アンカーの破壊形態は,一本のアンカーに対し,アンカー筋と接着剤 界面での破壊とコンクリート界面と接着剤界面での破壊が混在していた.

非拘束試験におけるひび割れコンクリートの破壊形態は、ひび割れを入れ ていない試験体に比べ、破壊したコーン径は小さく、その形状はコーンが楕 円形で2分割されたものが多く観察された.

図-3 にひび割れ幅と耐力保持率の関係を示す. C-PO-M12-0 の最大耐力の 測定ができなかったため, D13 の試験を行った結果の 32N/mm² を C-PO-M12-0 も同等の付着強度と仮定し, ひび割れコンクリートの残存保持 耐力を算出した.

ひび割れ導入によるアンカーの耐力保持率は、ひび割れ幅 0.3~0.5mm に おいて、40~80%であり、非拘束試験、拘束試験ともに、あと施工アンカー の耐力保持率は先付けアンカーと同等もしくはそれ以上であった.また、拘 束試験の耐力保持率は、非拘束試験の耐力保持率より 10%程度大きくなる 傾向が認められた.あと施工アンカー部のひび割れ発生箇所は、アンカー筋 まで達するひび割れとアンカー材とコンクリート界面部でのひび割れの両 者が混合していたことから、この破壊形状により、あと施工アンカーの方が 先付けアンカーより耐力保持率が大きかったと考えられる.

4. まとめ

アンカー施工後にコンクリートにひび割れを導入し,ひび割れ幅との耐力 保持率の関係を調べ,ひび割れ導入によるアンカーの耐力保持率は,ひび割 れ幅 0.3~0.5mm において,40~80%であった.

参考文献

1) 石原力也ほか:コンクリートのひび割れがあと施工アンカーの力学性能に与える影響 評価のための試験方法の開発,日本材料学会 コンクリート構造物の補修・補強アップ グレード論文報告集,第15巻,pp.381-386,2015.10

図-3 ひび割れ幅と耐力保持率