事前に塩分浸透を受けたコンクリートの凍結融解環境における塩分浸透性

八戸工業大学	学生会員	〇水口	真人
八戸工業大学	正 会 員	迫井	裕樹
八戸工業大学	正 会 員	阿波	稔
八戸工業大学		月永	洋一

1. はじめに

積雪寒冷地におけるコンクリート構造物は, 凍害と 塩害の複合劣化を受けやすい環境にある。コンクリー トの凍害と塩害の複合劣化についてはこれまでにも多 くの検討が行われているが, それらの多くは, 劣化を 生じていないコンクリートを対象として, 凍結融解作 用下での塩分浸透性, あるいは凍結融解に伴い生じた スケーリング劣化が塩分浸透性に及ぼす影響を検討し たものとなっている。

一方,実構造物を考えたとき,建設後供用期間中の 凍結防止剤の散布あるいは飛来塩分等により,凍結融 解作用を受ける前に硬化体中に塩分浸透が生じている ことが想定される。事前に塩分浸透を生じることによ り,凍結融解作用時の凍結水量やスケーリング劣化の 程度が変化することが想定され,凍結融解環境下での 塩分浸透性も変化することが考えられる。

そこで本研究では、凍結融解作用を受ける以前の塩 分浸透の有無が凍結融解環境下におけるコンクリート 中への塩分浸透性に及ぼす影響を把握することを目的 として、実験的検討を行った。

2. 実験概要

2.1 使用材料·配合·供試体

本研究で用いたコンクリート供試体の配合を表-1 に示す。本研究では、水セメント比 55%、単位水量 163kg/m³、細骨材率 44%とし、目標スランプ 8.0±1.0cm、 目標空気量 5.0±1.0%のコンクリート供試体を用いた。

供試体は,100mm×100mm×400mmの角柱供試体と し,打設24時間後に脱型を行った。脱型後,100×100 ×100mmに切断した後,試験面を除く5面をシリコン でシールした後,材齢7日まで水中養生を行った。

後述する条件において、事前塩分浸透を生じさせる ものについては、3%Nacl 水溶液を用いて材齢 84 日ま

表一1 配合

W/C	s/a	単位量 [kg/m ³]			AE剤	AE減水剤	
[%]	[%]	W	С	S	G	[A] *	[C×%]
55	44.0	163	296	752	1098	3.3	0.2

※1A=0.001%

表-2 実験条件

事前浸透	暴露環境	試験溶液	
有り	凍結融解		
	20°C	NaCl	
無し	凍結融解		

で事前塩分浸透を行った。また,事前塩分浸透を行わ ない供試体については,打材齢 84 日まで水中養生を 継続した。

2.2 塩化物イオン濃度試験

本実験における試験条件を表-2 に示す。暴露条件 としての凍結融解環境は、+20℃~-20℃の温度範囲で、 +20℃で1時間保持、4時間で-20℃まで降温、-20℃ を3時間保持した後、4時間で+20℃まで昇温の12時 間1サイクルとした。その他比較用として20℃一定環 境を設定した。各条件において1および3ヶ月暴露を 行い、所定の暴露期間終了後、全塩化物イオン濃度の 測定を行った。全塩化物イオン濃度の測定は、試験面 から10mm間隔で50mm位置まで試験片を採取し、硝 酸銀滴定法により行った。

3. 実験結果および考察

図-1 に各条件における全塩化物イオン濃度分布を 示す。縦軸には全塩化物イオン濃度,横軸には供試体 表面からの深さを示している。図中の凡例は,[事前浸 透の有無]-[暴露環境]-[暴露期間]の組み合わ せで示している。

キーワード:コンクリート,複合劣化,凍結融解,塩化物イオン浸透性,事前塩分浸透 連絡先:〒031-8501 青森県八戸市大字妙字大開 88-1

図-1 より、全塩化物イオン濃度分布は、暴露環境 の違いによらずいずれも、表面からの深さに伴い減少 することが確認された。また、事前浸透の有無によら ず、凍結融解作用を受けた供試体の全塩化物イオン濃 度分布は、20℃一定環境下におけるそれと比較して、 高い濃度が示される事が確認された。

事前浸透の有無の違いに着目すると、表層(0~ 10mm)では顕著な差が生じているものの、2層目(11 ~20mm)以深では、事前浸透の有無による濃度の差は 少ないことが確認された。つまり、本研究の範囲内で は、凍結融解環境下における塩分浸透において、事前 塩分浸透の有無による影響は少ないものと考えられる。

図-2 には深さ 0~10mm 位置における全塩化物イ オン濃度の経時変化を,また**図-3**には深さ11~20mm 位置での全塩化物イオン濃度の経時変化を示す。

図-2より、凍結融解作用を受けたものは、暴露前 の塩分浸透の有無によらず、暴露開始初期において、 0~10mm 位置での全塩化物イオン濃度が著しく増加 するものの、凍結融解環境に暴露を継続してもその後 の全塩化物イオン濃度の増加は緩やかとなることが確 認された。なお、20℃一定環境において暴露したもの については、全塩化物イオン濃度の顕著な増加は認め られず、ほぼ一定の濃度を示すことが確認された。

一方,11~20mm 位置における全塩化物イオン濃度の経時変化(図-3)は,事前塩分浸透の有無によらず, 凍結融解作用を受ける環境下では,暴露期間を通じて, 増加する傾向を示すことが把握された。

これらの結果より、事前塩分浸透の有無によらず、 塩化物イオンが存在する環境下で凍結融解作用を受け ることにより、20℃一定環境下よりも塩化物イオン浸 透が促進されることが確認された。20℃一定環境下で

は、拡散に基づく浸透であるのに対して、凍結融解作 用下、特に塩化物イオンが存在する環境下で凍結融解 作用を受ける際は、氷点降下の影響によると凍結水量 の変化と、硬化体内部での水分移動が大きく影響する ものと考えられる。今後、寒冷地域での塩分浸透予測 において、塩化物イオンと凍結融解作用およびそれに 伴う硬化体内部での水分移動の影響を組み合わせた検 討が必要であると考えられる。

4. まとめ

本研究の範囲内で得られた結果を以下にまとめる。

- 事前塩分浸透の有無によらず、凍結融解環境下に おける全塩化物イオン濃度は 20℃一定環境下に おけるそれと比較して、高い濃度を示す。
- 2) 事前浸透の有無によらず、凍結融解環境への暴露 初期に表層部(0~10mm)での全塩化物イオン濃 度が著しく増加するが、その後暴露を継続しても 全塩化物イオン濃度はほぼ一定となる。
- 3) 11~20mm 位置における全塩化物イオン濃度は、 凍結融解期間に伴い増加する傾向を示す。