加速度センサとインパルスハンマを用いた打撃試験による コンクリート構造物内部の欠陥領域評価の効率化

徳島大学大学院	学生会員	○野内彩可
長岡工業高等専門学校	正会員	村上祐貴
長岡工業高等専門学校	非会員	井山徹郎
長岡工業高等専門学校	正会員	池田富士雄
長岡工業高等専門学校	非会員	外山茂浩

1. はじめに

著者らの既往の研究では、人工欠陥を埋設した床版試 験体(断面 900 mm×900 mm) に対し、インパルスハンマ と加速度センサを用いた打撃試験により得られた周波数 応答関数(伝達関数)全体を自己組織化マップ(Self-Organizing Map,以下,SOM)でパターン認識し、欠陥領 域を判定可能か検討した¹⁾.その結果、直径 200 mm、埋 設深さ 90 mmの欠陥まで、コンクリート内部の欠陥領域 を判定可能であることを明らかとした.一方、この打撃 試験方法では、NDISの衝撃弾性波法²⁾を参考に、加速度 センサを打撃点近傍に設置して測定を行った.加速度セ ンサは測定面に薄い粘着テープを貼り付けて接着してい ることから、打撃位置近傍のそれぞれの測定箇所に粘着 テープを貼り直す必要があり、測定に時間と労力を要し ていた.

そこで本研究では,提案した欠陥領域判定手法におけ る測定方法の効率化を目的として,加速度センサの設置 位置を固定して,打撃点のみを移動させた打撃試験を実 施し,この方法で取得した各打撃点の周波数応答関数を SOM に適用することで,コンクリート内部の欠陥領域 の判定が可能か検討を行った.

2. 実験概要

試験体概要を図-1 に示す. 試験体は,断面 1700 mm×1700 mm,高さ180 mmであり,著者らの既往の研究 で用いた試験体に比べて,大型の床版試験体である. 試験体上部には D16 鉄筋を配筋した. 試験体内部には,内部欠陥を模擬した直径 100,200,300,400,500 mm の円 盤状の人工欠陥 (スチレンボード:厚さ5 mm)を試験体 半面に同一深さで埋設した.人工欠陥 (以下,欠陥)の埋 設深さは4 水準とし,埋設深さ30 mm と 50 mm の試験体 を大型試験体 A,埋設深さ70 mm と 90 mm の試験体を大型試験体 B と以降称する.

k 200 300@4=1200 + 200 29303132 * 5 6 7 8 9 1011 1213 1415 1617 1819 2021 2223 2425 2627 28 234 A B C D E F G H - J K L M Z 直径 大型試験体A 直径 埋設深さ50 mm 直径 400 m 大型試験体B / 直径 200 m 埋設深さ90 mm O P Q R 1700 U V W X Y Z AA AE AC AE AF AC 大型試験体A 埋設深さ30 mm 大型試験体B 埋設深さ70 mm 50 150@8=1200 윙 • <u>D16</u> <u>8</u> 8 100 単位 図-1 試験体概要

打撃の入力には、インパルスハンマを用い、打撃によ り生じるたわみ振動の測定には、加速度センサを用いた. 測定は複数の打撃点に対し、加速度センサの設置位置(以 下、センサ位置)を1点に固定して行った.打撃点は図 -1に示した50mm間隔の各格子の交点とし、例えば、 試験体中心部の打撃点はQ17となる.本研究では、加速 度センサを大型試験体A、Bの試験体中心部(Q17)およ び試験体隅角部(A1)に設置して打撃試験を行なった. 加速度センサは打撃点と同一平面上に設置し、厚さ0.4 mmの粘着テープを用いて試験体表面に接着した.なお、 試験体は、試験体両端部から100mmの位置をφ50mm の鋼管パイプ上で支持した.

3. SOMによる欠陥領域判定

SOM によるクラスタリングマップの作成には, Viscovery SOMine 7.0 を使用し, ノード数 2000, テンショ ン (近傍半径) 0.5, クラスタ数は 4, クラスタ手法は凝集 性のあるクラスタを算出する SOM-Ward に設定した.

SOM に用いる入力データには 100~8000 Hz の周波数

キーワード 非破壊検査,周波数応答関数,自己組織化マップ 連絡先 〒940-8532 新潟県長岡市西片貝町 888 番地 長岡工業高等専門学校 TEL 0258-34-9276

-169

注) 各図中のクラスタの色は同一であるが, SOM による解析は別々に行っておりクラスタ指標は異なる.

表-1 センサ位置による各欠陥の欠陥検知率				
試験体名	人工欠陥のパラメータ		欠陥検知率 (%)	
	埋設深さ (mm)	直径 (mm)	A1	Q17
大型試験体A	30	100	0%	0%
		200	100%	100%
		300	84%	100%
		400	100%	100%
		500	97%	100%
	50	100	0%	0%
		200	100%	100%
		300	88%	100%
		400	98%	100%
		500	94%	100%
大型試験体B	70	100	0%	0%
		200	0%	0%
		300	0%	0%
		400	98%	84%
		500	97%	100%
	90	100	0%	0%
		200	0%	0%
		300	0%	0%
		400	0%	0%
		500	96%	0%

応答関数から 100 Hz 間隔毎に周波数応答面積(計 79 次元)を算出した.また SOM による解析は,試験体毎に同 ーセンサ位置で取得した打撃試験結果毎に行った.各打 撃点におけるインパルスハンマの周波数スペクトルと加 速度センサで取得した周波数スペクトルから算出した周 波数応答関数を入力データとして SOM に適用すること で,内部欠陥の領域判定を行った.

図-2に一例として、大型試験体Aの打撃試験により得 られた周波数応答関数を入力データとしてSOMに適用し て得られたクラスタリング結果を、実試験体上の打撃点 に対応させたグレーディングマップを示す.なお、算出 した周波数応答関数は打撃点における周波数応答関数と してマッピングした.加えて、表-1にセンサ位置毎の各 欠陥の欠陥検知率を示す.ここで欠陥検知率は、欠陥領 域上においてグレーディングマップを基に欠陥と評価さ れたブロック数を各欠陥の面積(1マスに5割以上欠陥を 有するブロック数)で除すことで算出した.

図-2(a)および(b)に示した大型試験体Aのグレーディ ングマップより、センサ位置がA1とQ17の場合,直径100 mmの欠陥を除いて,全ての欠陥領域を判別できている. 欠陥検知率は,センサ位置がQ17の場合の方が高く,直径 100 mmの欠陥を除いて,埋設深さ30 mmと50 mmの全て の欠陥を100%検知可能である.なお,大型試験体Bは, 表-1より,センサ位置がA1の場合は,埋設深さ70 mmの 直径400 mmと500 mmの欠陥および埋設深さ90 mmの直 径500 mmの欠陥まで欠陥領域を判定可能である.一方, センサ位置がQ17の場合には,埋設深さ90 mmの欠陥まで は欠陥領域を判定できておらず,センサ位置の違いによ り欠陥検知率が異なった.この原因については現在検討 中である.

4. まとめ

本研究の範囲内においては、センサ位置を固定して、 打撃点のみを移動させた打撃試験で取得した周波数応答 関数を SOM に適用することで、打撃点と加速度センサ間 の距離が本試験体の最も遠い格子点間距離である半径 2200 mm 程度の範囲内において、埋設深さが 50 mm 以浅 の場合には欠陥直径は最小で 200 mm、欠陥直径が 500 mm の場合には埋設深さは最大で 90 mm の欠陥まで内部 欠陥の領域判定が可能であった.

謝辞 本研究は、(一財)新潟県建設技術センターの研 究助成を受けて実施した.ここに記して謝意を表する.

参考文献

- 野内彩可,村上祐貴,井山徹郎,外山茂浩:打撃応答 特性を自己組織化マップに適用したコンクリート内 部の領域判定,コンクリート工学年次論文集,Vol.39, No.1, pp.1879-1884, 2017.7
- 日本非破壊検査協会:コンクリート構造物の弾性波に よる試験法―第2部:衝撃弾性波法,NDIS2426-2,平 成21年6月29日制定