UAV (無人航空機)による渓流地形のモデリングと土石流流動解析 -静岡市清水区小島町の例-

東海大学大学院	学生会員	○廣林	智史
元東海大学海洋学部		佐藤	理雄馬
元東海大学海洋学部		杉山	洋基
東海大学	正会員	清水	賀之

1. 研究の背景と目的

近年,UAV (無人航空機)の飛行性能の向上や画 像解析技術の発展などにより,UAV による測量が急 速に普及している.土砂崩れ発生予想区域等の人が 立ち入ることが困難な現場では,UAV による測量は 極めて有用である.特に山岳部の渓流地形は,樹木 に覆われているため従来の航空機からでは撮影でき ず,水辺であるため人が立ち入っての測量作業も難 しい.本研究では,静岡県静岡市清水区小島町地内 の砂防堰堤建設予定地の渓流地形をUAV によりモ デリングし,土石流が発生した際の流動解析を行な うことで砂防堰堤に加わる衝撃力を推定した.

2. 現場での測定と SfM によるモデリング

砂防堰堤建設予定地である渓流地形のモデリング には、地形を複数のアングルから撮影し、その画像 群から3次元復元を行うSfM(Structure from Motion) 手法を使用した.図1にSfM 手法による3Dモデル 作成の流れを示す.現場は樹木が多く、大型のUAV では飛行ルートが限定されてしまうため、小型UAV であるDJI 社製のPhantom 3 Standard を使用した.さ らに地形の撮影以外に渓流の傾斜測定を行なった.

図 1. 撮影からモデリングまでの流れ

キーワード	UAV, SfM	[,土石流,	渓流,	砂防堰堤
連絡先	₹424-8610	静岡県静岡	市清水区	至折戸 3-20-1

SfM 手法では複数の画像内に存在する共通の特徴 点を認識し、その写り方から 3 次元的な位置関係を 復元する.そのため渓流内にある岩や特徴的な地形 の相対的な位置はある程度正確に再現される.しか し地形全体の方向、つまり地形の傾斜は再現が難し い.開けた場所であれば、UAV の位置を GNSS (GPS 等の全球測位衛星システム)により記録しているた め傾斜の校正も可能であるが、周囲を山や樹木に囲 まれた渓流では、GNSS の電波が届かなかったり、 マルチパスが発生したりして GSNN を使用できない. 今回の現場でも UAV が補足した GPS は最低 3 基か ら最大 8 基と不安定であった.測位には最低 4 基の 衛星を補足する必要があり、UAV の安定した飛行制 御には衛星 6 基以上の補足が必要とされている.

3. 傾斜の測定

傾斜を再現するために、UAV によるモデリングを 行なった区域内で人が立ち入れる地点を選定し、傾 斜測定を行なった.図2に示す傾斜測定装置には UAV の機体制御装置であるフライトコントローラを 使用した.搭載されている3軸加速度センサの情報 を読み取ることで任意の2点間の仰角を測定する. 図3は仰角測定の概念図である.専用の測量器具で はなく UAV のフライトコントローラを流用するこ とで、UAV の機体調整の為に持ち歩く機材と傾斜測 定機材が共通化でき、最小限の機材構成で済む。 仰 角測定は基準点を3点設け、そのうちの一番高度が 低い点から他の2点の仰角を測定した.測定した仰 角から地形の重力方向に対する傾斜を求め、地形モ デルを校正した.3回の撮影(フライト)と1回の傾 斜測定作業により, 渓流約35m区間の地形モデルを 約50 cm メッシュの精度で作成できた.

東海大学海洋学部 TEL054-334-0411 (代表)

図 2. 傾斜測定装置

図3. 傾斜(仰角)測定の概念図

4. 土石流の解析

作成した地形モデル上に高さ約4mの仮想の砂防 堰堤を配置し,個別要素法により土石流の流れを解 析した.図4に解析に使用した地形及び砂防堰堤モ デルを示す.砂防堰堤に土砂が衝突する状況を想定 し, 堰堤の約20m 手前から45 km/hの初速度を与え た粒子群を流し、砂防堰堤への衝撃力を求めた. 衝 撃力は、堰堤のモデルを 50 cm×50 cm の矩形領域に 分割することで, それぞれの領域への単位面積当た りに掛かる力を求めた.結果、土石流の先頭粒子が 堰堤に到達したときには最大48.91 kPaの衝撃力が加 わったが、その後は20s足らずで堰堤に加わる力が 一定となり、堰堤下部でも加わる力は25 kPa 程度で あることが分かった.図5は土石流衝突時と、土石 流がほぼ停止した時の衝撃力の分布を示している.

砂防ダム モデル

下流側から見た図

図 4. 渓流の 3D モデル

上流側から見た図

	-
粒子数	30000
直径	10 cm
密度	2650 kg/m ³
全粒子の体積	15.7 m ³
全粒子の重量	41.6 t
初速度	45 km/h
剛性係数(垂直)	$1.0 \times 10^8 \text{N/m}$
剛性係数(せん断)	$1.0 \times 10^8 \text{N/m}$
摩擦係数	0.6

	壁数	16639
	一辺の長さ	平均 50 cm
	剛性係数(垂直)	$1.0 \times 10^8 \text{N/m}$
	剛性係数(せん断)	$1.0 \times 10^8 \text{N/m}$
	摩擦係数	0.6

図 5. 砂防堰堤への衝撃力解析の様子

5. 今後に向けて

今後、他の渓流地形や砂防堰堤建設予定地でも本 手法による地形モデル作成と土石流流動解析が有効 か検討する必要がある.また,傾斜測定など人が直 接渓流に入って行なわなければならない作業を極力 減らし, 誰でも現場作業が行なえるように UAV やそ の他測定装置のオートメーション化を目指す. さら に土石流流動解析について、流体力による影響、粒 子の初速度による違いなど、パラメータを変更して、 土砂災害の減災に向けて多角的な解析及び評価を行 う必要がある.

謝辞

本研究を遂行するにあたり、現場をご提供いただ いた静岡県交通基盤部の関係各位にお礼申し上げる.

参考文献

- ・国土交通省国土地理院: UAV を用いた公共測量 マニュアル (案).
- ・佐藤理雄馬(2017): 土石流シミュレーションツ ールの開発 -UAV(無人航空機)による航空撮影と 情報処理技術、静岡県清水区小島町の地形モデル 作成- 東海大学海洋学部卒業論文.