セグメント覆工を対象とした大型覆工模型実験の3次元解析

(公財)鉄道総合技術研究所 正会員 〇木下 果穂 津野 究 牛田 貴士

1. はじめに

シールドトンネルのセグメント覆工を模擬した試験体の載 荷実験のシミュレーションを3次元 FEM 解析により行った. 載荷実験の結果と比較したので報告する.

2. 載荷実験のシミュレーション

(1) 載荷実験概要

本稿では、図1に示すような大型覆工模型実験装置¹⁾を用 いた載荷実験²⁾を解析対象とし、シミュレーションを行った. 覆工模型周囲の油圧シリンダ付きの皿ばねと反力板は全て覆 工模型に接触しており、覆工模型天端部の載荷用油圧ジャッ キにより、鉛直下向きの荷重を作用させている.

覆工模型は図 2 に示すように, (a) 4 つのセグメント模型 が 3 つの継手部により締結されているリング A と, (b) 5 つ のセグメント模型が 4 つの継手部より締結されているリング B の 2 種類のセグメント模型である. セグメント模型は D6 の主筋と D3 の配力筋により配筋された RC 構造であり, 継手 部では板厚 12mm の継手板をボルト (M20) により締結して いる.

(2) 解析概要

三次元解析で用いたモデルを図3に示す.セグメント本体 をソリッド要素,継手板をシェル要素,継手部のボルトをば ね要素でモデル化した.リングAとリングBは,2リングと もモデルの総節点数は14,700,総要素数は11,736である.

セグメント間の継手面には、引張ばね切りとするばね要素 を設置し、載荷時における継手部分の開口を模擬できるよう にした.ボルトで締結されている位置にはボルトばねを設置 している.なお、セグメント本体のソリッド要素と継手板の シェル要素は、それぞれの要素が接する三辺で固定している.

覆工模型周囲の皿ばねについては,反力板の範囲に引張ば ね切りとするばねを設置した.

解析に用いた覆工模型の物性値は,解析対象とした載荷実験にもとづいて設定した. セグメント本体のヤン グ係数は 22.5kN/mm², ポアソン比は 0.2,単位体積重量は 24.5kN/m³とした.

(3) 解析結果

a)荷重~変位関係

解析および実験により得られたセグメント覆工の天端部の荷重~変位の関係を図4に示す.これより,リン キーワード :セグメント,有限要素法,載荷実験 連絡先 :〒185-8540 東京都国分寺市光町 2-8-38 (公財)鉄道総合技術研究所 TEL042-573-7266

-1141-

グAでは載荷板押込み量 15.0mm 付近まで, リング B では 載荷板押込み量 2.5mm 付近まで, 解析結果は実験結果と一 致している.また,載荷板押込み量がこれらの値を超えると, リングAとリングBともに解析値よりも実験値の剛性が低下 している.これについては,リングAでは,実験において載 荷板押込み量 19.0mm でアーチ肩部の継手部付近に圧ざが発 生し,剛性が低下したことが要因の一つであると考えられる. 一方,リング B では,実験において載荷板押込み量 2.4mm でアーチ肩部の継手部付近にクラックが発生し,荷重が一旦 低下したことが要因の一つであると考えられる.

b) ひずみ分布

解析により得られた,ひずみの分布を図5に示す.ひずみ については von Mises (VM)相当ひずみを表示している.

リングAでは載荷により,継手部付近にひずみが生じてお り,特にアーチ肩部の継手部にひずみが大きい領域が生じて いる.実験におけるひび割れの発生箇所は,天端部あるいは アーチ肩部の継手部であり,継手部において圧ざ(圧縮破壊) が発生していることからも,解析結果は実験結果と概ね一致 していると考えられる.

リング B では、載荷が進むと継手部付近にひずみが生じる とともに、特に天端部の載荷板の範囲にひずみが大きい領域 が生じている.載荷実験では、継手部付近や天端内側に複数 のひび割れが分散して発生していることから、解析結果は実 験結果と概ね一致していると考えられる.

3. おわりに

載荷実験のシミュレーションを行った結果,載荷板が降伏 する荷重レベル以下では,解析結果は実験結果と概ね対応し, 解析手法の妥当性を確認した.今後は荷重条件や継手形式等 を変えたシミュレーションを行っていくことを考えている.

図4 荷重~変位関係(天端部)

載荷重(kN)

参考文献

図5 ひずみ分布

- 1) 高橋幹夫,津野究,小島芳之:大型トンネル覆工模型実験装置の開発,土木学会第61回年次学術講演会講演概要集,Ⅲ -070,pp.139-140,2006.9
- 2) 津野究,鎌田和孝:シールドトンネルを対象とした大型覆工模型実験,土木学会第71回年次学術講演会講演概要集,Ⅲ -436,pp.871-872, 2016.9