プレキャスト擁壁の変状形態に関する有限要素法解析

国立研究開発法人土木研究所 正会員 〇佐藤 登 澤松 俊寿 新田 武彦 宮武 裕昭

1. はじめに

国土交通省では、2016年を生産性革命元年と位置づけて各種の取り 組みを進めており、公共土木工事においてもプレキャストの活用による 生産性向上が検討されている. 擁壁、カルバート等の道路土工構造物に おけるプレキャスト製品はその種類が極めて多様であるため、個別の現 場条件から所要の安全性等を確保したうえで、最も合理的な製品を慎重 に選定する必要がある.一方で、土工構造物は主たる使用材料である土 砂や岩石等の不確実性が大きく、机上での計算結果だけでなく実際に発 生している被災等の事例の収集・分析が重要である.本論文では別報¹⁾ において報告した、変状事例の状況を想定した大型ブロック積擁壁の傾 斜土槽模型実験を対象に、二次元有限要素解析手法を用いて実験結果の 再現を試みた.また、再現を行った解析パラメータをもとに実物大でブ ロックの単位体積重量、控長の異なる条件でパラメトリックスタディを 実施した.

2. 大型ブロックの傾斜土槽模型実験を対象とした数値解析

傾斜土槽模型実験は、大型ブロック積擁壁の変状事例のうち安定 性に大きく関連すると考えられる上下ブロック間のずれを想定し実施 ¹⁾したものである.直高 H=7.0mの空積みに相当する条件(以下「分割型」 と称す)の大型ブロック積み擁壁を想定し1/10に寸法を縮小した模型を 傾斜させることにより擬似的に水平力を載荷した.

数値解析は二次元有限要素法解析により実施した.図1 に解析モデル図を示す.傾斜土槽模型全体をモデル化し,要素数は14471 要素,地盤 要素は四節点ソリッド要素とした.解析パラメータを表1に示す.モデルの構成則は,豊浦砂は Mohr-Coulomb,コンクリートブロックは線形弾 性体とした.単位体積重量γは,実際の模型の重量より設定した.豊浦砂 のせん断抵抗角¢,ヤング率 E は,Tatsuoka et al.²⁾の低拘束圧下の豊浦砂 の平面ひずみ圧縮試験の結果より¢=50.2°, E=12531kN/m²とした.ブ ロック同士の境界部,ブロックと土の境界部にはずれと剥離を表現する ためにインターフェイス要素を使用した.インターフェイス要素のパラ メータは文献³⁾,ブロック同士の摩擦試験結果等を参考に設定した.自 重解析の後,水平力を与えた.模型の傾斜は,鉛直方向と水平方向の物 体力を傾斜の量に応じて静的に変化させることで考慮した.実験におけ る滑動拘束板はブロックつま先のX自由度を拘束することで考慮した.

3. 傾斜土槽模型実験結果と数値解析結果の比較

図2に k_h=0.36 における傾斜土槽模型実験の結果と数値解析の結果を 示す.実験では1段目のブロックと2段目のブロック間が滑動したが, 数値解析においてもブロックがずれる形態を確認した.ブロック背面に

表1 解析パラメータ(傾斜土槽模型)

地盤要素			裏込め材 豊浦砂 Dr=80%	基礎地盤 豊浦砂 Dr=80%	コンクリート ブロック
構 成 則			Mohr-Coulomb		Linear elastic
単位体積重量	γ	(kN/m ³)	15.66	15.66	18.58
粘着力	с	(kN/m^2)	0	0	-
せん断抵抗角	ϕ	(deg.)	50.2	50.2	-
ポアソン比	ν	-	0.17	0.17	0.3
ヤング率	Е	(kN/m ²)	12531	12531	23500000
インターフェイス要素			土 - <i>コンク</i> リート	土 - コンクリート底	コンクリート- コンクリート
構 成 則			Coulomb		
垂直剛性係数	kn	(kN/m ³)	1.E+09	1.E+09	1.E+09
せん断剛性係数	kt	(kN/m ³)	1.E-01	1.E+05	1.E+05
粘着力	с	(kN/m^2)	0	0	0
せん断抵抗角	ϕ	(deg.)	33.5	31.0	32.3

(a)模型実験結果

(b) 数値解析結果図2 模型実験と数値解析の結果の比較

発生したすべり線は解析では滑動した2段目のブロック背面付近から発生し、実際の挙動に概ね近い傾向を示した.これより数 値解析によりブロック間のずれの挙動のシミュレーションが出来たと考えられる.図3に実験結果と数値解析結果の水平震度 キーワード:ブロック積擁壁 変状形態 有限要素法解析 傾斜土槽模型実験 k_h と高さ hi=650mm における水平変位 dx の関係を示す.実験では k_h =0.38 まで転倒モードが卓越して変位し、その後急激に崩壊に至ったが、数値解 析結果では、概ね dx=20mm 程度までは挙動を再現できた.

4. パラメトリックスタディ

前述した傾斜土槽模型実験の再現解析結果を参考に,実物大を想定した 大型ブロック積擁壁を対象とした数値解析を実施した. **表**2 に解析ケース を示す.載荷する水平力は前述の解析で挙動が再現できた範囲内である *k*_h=0.2 とした.地盤要素のパラメータは,文献³⁾を参考に実際の大型ブロ ック積擁壁を想定し設定した.*H*=7.0m,壁面勾配は1:0.4 とし,ブロック のγと,ブロック1 個の高さ*h*に対する控長*b*の比*bh*を変数とした.イン ターフェイス要素は,前述の傾斜土槽模型実験の値を参考とした.要素数 は23482要素でモデル化した.また,基本となるケースとしてγ=23kN/m³, *b/h*=1の練積みに相当する条件(以下「一体型」と称す)についても検討した. 一体型はブロック同士のインターフェイス要素を無くすことで考慮した.

図4に、相対水平変位 $dx \ e \ H$ で正規化した dx/H、 ブロック間のずれ dx_s を b で正規化した dx_s / b 、及びブロックの回転 $\theta \ge h/H$ の分布を示す.相 対水平変位 dx/Hは、b/hが小さくなるにつれ、また γ が小さくなるにつれ て dx/Hは増加する傾向にある。また、一体型の条件は剛体的に傾倒して いるのに対し、分割型の b/hが小さい条件では高さの中程を頂点としたは らみ出しが認められた.ブロック間のずれ dx_s/b 、ブロックの回転 θ は、一体 型の条件では $0 \ge x$ る。分割型の b/h=1.0では、ずれは高さ方向に全体的 に分布し、回転の発生も僅かであったが、b/hが小さくなる $e \ dx_s /H \ge \theta$ は e もに大きくなり、中段部にずれ、回転が集中する傾向を示した。

各条件のはらみ出しの程度を次式の Ib⁴により定量的に評価した.

$$I_b = \frac{z_m}{H} \times \frac{dx_m}{dx_t} \tag{1}$$

ここに、 I_b はらみ出し指数、 Z_m :擁壁頂部から dx_m の箇所までの深さ、H: 直高、 dx_m :最大相対水平変位、 dx_t :擁壁頂部の相対水平変位である.し たがって、 $I_b=0$ の場合は剛体的な傾倒であり、 I_b が大きい程はらむモー ドが支配的となる.図5に I_b とb/hの関係を示す.b/hが 0.9までは $I_b=0$ 、 すなわち剛体的な傾倒であるが、b/h < 0.8では、 $I_b > 0$ となりはらみ出しが 生じている.すなわち、b/hの小さい扁平なブロック形状では、傾倒に加 えてはらみ出す変状形態が加わっている.また、ブロックのγが小さいほ デ ど I_b が大きく、はらみが大きくなる.

5. まとめ

・傾斜土槽模型実験を二次元有限要素法解析により再現した結果,1段目 と2段目のブロックがずれる変状形態及びすべり位置など概ね一致した. ・実大寸法におけるパラメトリックスタディの結果,事例調査でも認めら

表2解析パラメータとケース

地盤要素	10.0	裏込め材	基礎地盤	コンクリート ブロック
構成員		Mohr-Coulomb		Linear elastic
単位体積重量	γ (kN/m ³)	19	20	23, 20, 17
粘着力	c (kN/m ²)	0	0	-
せん断抵抗角	φ (deg.)	30	35	-
ポアソン比	ν	0.35	0.3	0.3
ヤング率	E (kN/m ²)	14000	84000	23500000
高さ控長比	<i>b / h</i>			1~0.6

れたはらみ出しの変状形態を確認した.はらみ出しはブロックの控長がより小さく,ブロックの単位体積重量 γ が小さい条件で 特に顕著となる傾向を示した.

参考文献 1) プレキャスト擁壁の変状形態に関する一考察, 第 73 回土木学会年次学術講演会,2018(投稿中) 2) Tatsuoka et al.: Strength and deformation characteristics of sand in plane strain compression at exteremely low pressures, SOILS AND FOUNDATIONS, Vol.26, No.1, pp.65-84, 1986.3 3) 日本道路協会:道路土工一擁壁工指針, 2012.7 4) M. Sabermahani et al.: Experimental study on seismic deformation modes of reinforced-soil walls, Geotextiles and Geomembranes, Vol.27, pp.121–136, 2009.