サクション効果を記述する SYS Cam-clay model を用いた 透水模型実験の空気~水~土連成有限変形解析

名古屋大学 正会員 〇吉川高広 フェロー会員 野田利弘 名城大学 正会員 小高猛司 横浜国立大学 正会員 崔瑛

1. はじめに

平成24年7月の九州北部豪雨による矢部川堤防の被災は、局所的なパイピングをきっかけとして決壊した "越流なき破堤"として大きな衝撃を与え、複雑な地盤条件・水理条件においても合理的に河川堤防の安全性照 査が可能な最新の地盤力学に基づく解析手法の構築が求められている.

著者らはこれまでに、土骨格の弾塑性構成式に SYS Cam-clay モデル¹⁾を搭載した空気~水~土連成有限変 形解析コード²⁾を用いて、透水模型実験³⁾のシミュレーションを行い、浸透破壊する場合としない場合の違い を表現できることを示した⁴⁾.本稿では、京川ら⁵⁾、Zhang and Ikariya⁶⁾に倣ってサクション効果を考慮できる SYS Cam-clay モデル⁷⁾を新たに用いて、透水模型実験³⁾のシミュレーションを実施し、サクション効果の有無 が浸透破壊挙動に与える影響について述べる.

2. 透水模型実験³⁾の概要と解析条件

図1は参照した透水模型実験³の概要を示す. 模型 の右側から透水させる実験で,領域Iに基礎地盤の高 透水性層として三河硅砂3号を,領域IIに上部砂質基 礎地盤層(以後,地盤上部層)として三河硅砂8号を, 領域IIIに堤体として三河硅砂6号,7号,8号を5:2:

5 で混合した砂を用いている. 実験手順は, 基礎地盤と堤体を構築した後に, (i)模型右端の水位を基準面から 100mm の高さで 1.5 時間放置後, (ii)水位を 高さ 330mm まで上昇させる. 著者ら ⁴⁾はこれまでに, 目立った変形が生じ なかった (a)地盤上部層厚が 50mm (図 1 中の D = 50mm)の場合と, 最終的 には滑りが堤体天端部分まで到達した (b)地盤上部層厚が 30mm (図 1 中の D = 30mm)の場合をシミュレートし, (a)の場合は変形がほぼ生じない様子

を,(b)の場合は基礎地盤の層境からボイリングする様子の再現に成功した.本稿では,(a)(b)両ケースのシミ ュレーションを,サクション効果を考慮できる SYS Cam-clay モデルを用いて行い,(a)では変形がほぼ生じな い様子を再現できたが,ここでは紙幅の都合上図面は省略し,(b)について,サクション効果有無の違いが堤 防の変形挙動に与える影響を示す.材料定数は既往研究^{8),9)}を参考に決定し,水分特性曲線を図2に示した. 初期状態は,実験条件に合わせて決定し,初期の比体積,構造,応力比,異方性,飽和度,間隙空気圧(0kPa) および間隙水圧(水分特性曲線から計算)を地盤内で一定と仮定し,土被り圧に応じて過圧密比を分布させた.

3. 解析結果

まず、上述(i)の過程について、図3は、サクション効果無しの場合の水位100mm上昇前後の飽和度分布を示す. 模型堤防は初期飽和度約10%で作製し、その後水位を100mmまで上昇させ、十分に(1.5時間)放置すれば、図2に示す水分特性曲線を反映して、天端位置においてもほぼ飽和状態になる. なお、本研究では間隙比依存性の水分特性曲線を用いていないため、サクション効果の有無にかかわらず両者はほぼ同じ結果になる. 図4は水位100mm上昇後1.5時間経過時の比体積変化分布(水位100mm上昇直前からの変化量、圧縮が正)を比較した図である. サクション効果有りの方が、吸水コラプスが生じるため、体積圧縮量が大きい. 図5は水位100mm上昇前後の過圧密比分布を比較した図である. サクション効果有りの方が、吸水コラプス(塑

キーワード 空気~水~土連成解析,サクション,浸透破壊

·連絡先 〒464-8603 名古屋市千種区不老町 名古屋大学工学部9号館3階 TEL:052-789-3834

図1 透水模型実験³⁾の概要

-243

性体積圧縮)に伴い正規圧密化している.

次に、上述(ii)の過程について、図6は実験結果と解析結果を比較した図である.なお、解析結果は堤体法 尻付近を拡大して示した.実験では、浸透開始から50秒経過時に基礎地盤の層境から変形が生じ、それをき っかけに堤体が進行的に崩壊していく.解析においても、基礎地盤の層境から変形し始め、これをきっかけに 堤体が法尻から徐々に崩壊していく様子を捉えられている.実験結果のようにその後の大崩壊を表現できてい ないが、サクション効果有りの方が、堤体内部への変形が進行している.これは図5で示したように、浸透に よる吸水コラプス(塑性体積圧縮)が正規圧密化を促進し、堤体の強度・剛性が小さくなったためである.

4. おわりに

サクション効果を考慮できる SYS Cam-clay モデルを用いると、浸透時に生じる吸水コラプス(塑性体積圧 縮)が正規圧密化を促進するため、堤体内部への変形が進行することを示した.実験結果のように、堤体が大 崩壊する様子の表現までは至っていないが、同条件で地盤上部層厚 50mm の解析を行う場合は、実験と同様に ほぼ変形が生じない様子が再現できる点を強調したい.

謝辞: JSPS 科研費 17H01289 および H29 年度国土交通省河川砂防技術研究開発の助成を受けた.ここに感謝の意を表する.

参考文献: 1) Asaoka et al.: An elasto-plastic description …, S&F, 42(5), 47-57, 2002. 2) Noda and Yoshikawa: Soil-water-air coupled …, S&F, 55(1), 45-62, 2015. 3) 小高ら: 基礎地盤の複層構造…, 第 52 回地盤工学研究発表会, 961-962, 2017. 4) 吉川ら: 模型堤防の浸透破壊…, 土木学会第 72 回年次学術講演会, 201-202, 2017. 5) 京川ら:

