地表面断熱層が凍土融解による地形変形に及ぼす影響について

Study on effect of surface insulation on thawing of frozen ground

北海道大学大学院工学院	\bigcirc	学生員	落合 凌	(Ryo Ochiai)
北海道大学大学院工学院		学生員	本間 翔太	(Shota Homma)
関西電力		正会員	小川 昌也	(Masaya Ogawa)
北海道大学大学院工学研究院		正会員	鄭好	(Hao Zheng)
北海道大学大学院工学研究院		フェロー	蟹江 俊仁	(Shunji Kanie)

1. 緒言

近年,世界規模の環境問題として地球温暖化が 頻繁に取り上げられる.温暖化による平均気温の 上昇率は高緯度地域ほど特に大きい傾向にあり, アラスカやシベリアなどの永久凍土地帯もこの影 響を強く受けている、永久凍土地帯の地盤は地下 数 m から数百 m の厚さで一年を通して凍結して おり、表層は季節の移り変わりに応じて凍結融解 を繰り返すため、活動層と呼ばれている.活動層 の表面にはモス層と呼ばれる植生が存在し、大気 と地盤の間の断熱的役割を担っている¹⁾.しかし 森林火災や過度な開発によりモス層が破壊され, 温暖化の影響も相まって凍土の融解が急速に進ん でいる.融解により活動層の厚さが増すと、大規 模な地形変形を引き起こす恐れがあり. この急激 な地形変形が凍土地帯の社会基盤施設や人々の生 活を脅かしている. (図 1-1)

またひとたび凍土の融解が生じると排水の影響 で加速度的に融解が進行してゆく. 故に早急な対 処が必要とされるが、凍土の融解機構は十分な研 究・検証がされておらず有効な対抗策は未だに提 案されていない.

私たちは、気候変動に伴う凍土の融解機構から、 今後凍土地帯で起こりうる事象を分析し, 被害を 最小限に抑えるための対抗策を提案することを大 きな研究目標としている. その第一歩として, ま ずは凍土地盤の融解現象のモデル化を考える. 既 往の研究より,基礎的な温度侵食による斜面崩壊 は室内実験で再現された. これをもとにモス層の 影響に焦点を当て,その存在が融解時の地形変形 に如何に起因するかを室内実験において検証する. さらに実験結果及び,有限要素法と個別要素法 (以下, それぞれ FEM, DEM とする)の連立に よる解析を用いて,一般的な斜面崩壊のモデルを 構築する.

図 1-1:斜面崩壊

2. 室内実験

2.1 実験概要

既往の研究により確立された実験方法にモス層 を加味し、その存在の有無による崩壊過程の違い を観察することで、融解現象におけるモス層の役 割を評価する.実験方法として、アクリル容器に ガラスビーズを詰め、飽和状態になるまで水を入 れる. 試料表面に断熱材として発泡スチロールを 図 2-1 のように断面方向片側に設置する.所定の 位置に温度計を差しこみ完全に凍結させたのち, 融解させる.この際、断熱の有無による崩壊の顕 著な差を観察するため、温風機により融解を促進 させる.融解時の断面形状の観察と温度計測を行 い、断熱の有無による断面形状の差異や温度変化 を追うことにより断熱効果を検証する.

断面図

図 2-1: 実験条件

2.2 実験結果

崩壊過程を図 2-2 に示す.手前側半分には断 熱材を置かず,奥側半分に断熱材を設置している. 融解完了後(融解開始から約16時間後)では手前 と奥で断面形状に差が見られなかったが、融解途 中には斜面の角度の違いが確認された. 融解開始 6時間後の図において赤の実線が奥側の, 黄色の 実線が手前側の破壊面の傾斜を表している.奥側 の斜面の方がより高い角度を保っていることから, 断熱の効果により崩壊が遅れていることが分かる. 融解時の温度変位は解析結果と共に次節で示す.

6時間後 16 時間後 図 2-2:融解過程の破壊面

キーワード: 永久凍土,斜面崩壊,融解,モス層,熱伝導 連絡先: 〒060-8628 北海道札幌市北区北 13 条西 8 丁目 北海道大学大学院工学院 TEL 011-706-6115

3. FEM による熱伝導解析

3.1 解析モデル

前章の実験では試料全体の融解の様子や温度 計位置の温度変化を調査することが出来た.本章 では各々のガラスビーズの凍結融解を判断するた め前章で得られたデータをもとに数値解析を行う. 数値解析には二次元非定常熱伝導方程式を用いた 有限要素法を使い,融解時の潜熱の影響も考慮す べく等価比熱法を適用する.

図 3-1 のように,解析領域は実験条件に即して 横 50cm,高さ 12cm の二次元平面,各要素はガラ スビーズの粒径を基に 0.5cm の正方形,初期条件 は実験値から - 6℃とした.さらに潜熱の評価を正 確に行うため,空気との熱伝達(領域 2 と 4)及 びアクリル板からの熱伝導(領域 3)を表現した.

図 3-1 : 解析モデル

3.2 解析結果

実験で得られた温度変化と,解析結果を図 3-2 に示す.解析結果は実験時の温度計と同位置のも のである.実験を破線で,解析を実線で表し,そ れぞれ断熱有を赤で,断熱無を黒で表している.

実験で差が確認できた6時間後に着目すると, 断熱材が無い場合は潜熱領域を突破しているのに 対し,ある場合は未だ潜熱領域内にある.この温 度差が,前章で示した融解時の破壊面の差に起因 すると考える.

次に,解析結果に着目すると,潜熱領域を脱す る瞬間までは概ね実験結果と類似した値が得られ ていることが分かる.しかし,潜熱を超えた後の 温度変位の傾きが実験に対して小さくなっている. これは,実験では融解した水は排水しているのに 対し,解析では融解した後も水が存在し比熱を持 っているためと考える.しかし,本解析では,融 解のタイミングを正しく評価することを目的とし ているため,潜熱領域を突破するまでの間を実験 結果と概ね整合性良く追えていることから,本研 究を進めていく上では十分な結果であると考える.

図 3-2:温度分布(実線:解析,破線:実験)

4. FEM と DEM の連立解析

4.1 実験結果

前章の熱伝導解析で得られた結果を用いて DEM 解析を行う. 粒子のサイズは 5mm でガラスビー ズを表現している. 初期配置は, 図 4-1 右側のよ うに領域内にランダム配置させる.本章の解析で は,ステップ毎に各粒子の融解判定を行い,潜熱 領域の温度を超え,融解と判定した粒子の固着力 を解放し,ビーズの崩壊を再現するという手法を 取る. 解析フローは次のようになる.

初めに, DEM 解析で粒子の位置が確定した後, 図 4 1 左側に示すように各粒子の中心が FEM 解 析においてどの要素に属するかを判断する.要素 毎の補間関数から粒子の温度を算出し,最後に求 めた要素の温度と凍結線の温度を比較し,凍結線 を上回っていれば,その粒子は融解したとみなす.

図 4-1: 解析モデル及び考え方

4.2 解析結果

解析結果を示す. 左から順に, 融解開始序盤, 中盤, 終盤の結果を, 上段に断熱材がある場合, 下段に無い場合の結果を示す. 本解析により, 融 解した粒子から徐々に崩落していく様子が表現さ れている. 実験と同様, 断熱がある場合はない場 合に比べてより高い崩壊面を保っており, 崩落速 度の違いも反映できていることが確認できた.

5.まとめと展望

実験から凍土の融解における断熱層の役割を確認できた.さらに実験条件をもとに FEM と DEM の連立解析を行い,融解モデルの構築ができた. 今後は確立した連立解析を使い,構造物の存在を 想定した数値シミュレーションを行う予定である. 参考文献

1)福田正己:永久凍土の融解と地球温暖化,講演 会「温暖化に伴う環境の変遷」講演要旨 pp.1, 2005

2)Matsushima, T. and Saomoto, H. : Discrete Element Modeling for Irregularly-shaped Sand Grains, Proc. NUMGE2002 : Numerical Methods in Geotechnical Engineering, Mestat (ed.), pp.239-246, 2002.