土の凍結膨張によって生じる熱流直交方向応力に関する研究

A Study on Stress Increase in Transverse Direction to Heat Flow due to Freezing Expansion of Soil

北海道大学工学院	○学生員	湯原 進二 (Shinji Yuhara)
北海道大学工学院工学研究科	正会員	鄭好 (Hao Zheng)

研究背景・目的

地盤凍結工法とは、地中に埋設した凍結管に冷却液を流し、 人工的に地盤を凍結させる工法1)である. 50年来, 我が国で はライフライン構築から地下工事まで凍土のもつ遮水性、高 い強度、環境影響が少ないなどの特長からこの工法が広く利 用されてきた.しかし、地盤凍結工法では、有限領域を凍結 させるため、多次元的な凍結膨張が発生する. そのため、三 次元的な膨張予測や応力の評価が必要となり、特に熱流直交 方向の膨張率を得ることは既往の研究2)からも難しいとされ ている. この膨張は粒径の小さい粘性土のみで発生し、基本 的に砂や粒径が0.1mmよりも大きいものでは起きない1)とさ れている、本研究では、熱流直交方向応力測定装置を用いた 三軸凍上試験により得られる熱流直交方向応力に注目する. 凍上性のある (アイスレンズの成長を伴う) 試料と非凍上性 の試料を用いて実験を行い、その違いから側方の応力挙動、 膨張特性について検討する. また, 実験により得られた熱流 直交方向応力とNMRにより計測された不凍水分量との関係 性について調査する.

2. 三軸凍上試験

2.1 三軸凍上試験装置

三軸凍上試験は外気の影響を最小限にするため1℃に保たれた低温室にて行う.実験装置概要は図-1の通りで、上下ペデスタルに送り込む冷却液で試料の温度をコントロールでき、供試体下部からの吸排水も可能になっている.

図-1 凍上試験装置

モールドはアクリルリングを積層した構造になっており、そ れぞれのリングにひずみゲージを設置し、凍結時の熱流直交 方向応力を測定できるようになっている.全てのリングに温 度計も設置してあるため、温度と応力の関係が得られる仕組 みになっている.熱流方向変位量は従来の(一軸)凍上試験 と同様レーザー変位計にて測定する.

2.2 実験条件

本研究では、吸排水を許す開式凍上試験を実施し、実験条件 は以下の通りである.

表-1 実験諸条件

凍結速度	1mm/hr
温度勾配	0.1°C/mm
熱流方向拘束王(o1)	50,100,200KPa

本研究では、試料として、MZ カオリンと豊浦標準砂を配 合した混合土五種、土丹、平均粒径 0.1mm と 3mm ガラスビ ーズの計八種を選定した. 混合土については全て MZ カオリ ンの重量比率で表記し、MZ カオリンの割合が少ない順から 混合土A (0%),混合土B (25%),混合土C (50%),混合 土D (75%),混合土E (100%) とする.

3. 試験結果

3.1 温度依存性

非凍上性試料である混合土A(0%),凍上性試料である混合 土C(50%)それぞれ実験終了後に得られた熱流方向膨張率 (熱流方向変位/初期供試体高さ)を表-2に示し,供試体中 心部のリング No.4, No.5の熱流直交方向応力の温度依存性 を図-3に示す.

表-2 熱流方向膨張率(Δh/h)

熱流方向拘束圧(σl)	50KPa	100KPa	200KPa
混合土A (0%)	0	0	0
混合土C(50%)	0.30	0.28	0.20

熱流方向について,混合土A(0%)は、熱流方向膨張率は0 であった.混合土C(50%)は拘束圧が大きくなると、膨張 率が小さくなるが、これは高志の式と整合性がとれる.一 方、熱流直交方向に関しては、熱流方向拘束圧の影響を受け

ず、応力が上昇していることがわかる. すなわち、熱流方向 拘束圧は、アイスレンズの成長を抑制するが、直交方向応力

Keywords: 凍上, 凍上試験, 凍結工法, 不凍水分量 北海道大学工学部〒060-8628 北海道札幌市北区北13条西8丁目 011-706-6115

には寄与しないと考えられる. さらに、非東上性試料でも、 上昇の傾きや、値の大きさは違えど、応力が発生することが わかった. (紙面の都合上省略するが、実験を行った全試料 について、同様に、拘束圧に影響されない応力の増加傾向が 見られた.) 次に、凍上性のある試料(拘束圧100KPa)の 実験終了後に得られた熱流方向膨張率を表-3 に示し、熱流 直交方向応力の温度依存性を図-4 に示す. ここではリング No.3~7 の平均応力を示す(1,2,8 リング内に試料が満たされ ていない可能性があるため). 粒径の小さい混合士E (100%)が凍上性が高く、豊浦標準砂を多く含む混合士B

(25%)の膨張率が一番小さい.また、全ての非凍上性試料 において、熱流方向膨張量は0であった.

図-3 混合土AとCの温度依存性 図-4 全試料の温度依存性 凍上性のある試料において、凍結初めの0℃から側方への応 力は発生し、-1℃付近を境界にバイリニア型の上昇が見られ る. 混合土E (100%) 以外の試料は、熱流方向腹張率は大き く変わらないが、側方応力の大きさや上昇率はばらつきがあ るため、拘束圧比較の結果と同様、アイスレンズの成長は、 熱流直交方向への腹張に寄与しないということが言える. 非凍上性試料について、寒天は-1℃付近まで、凍上性試料に 類似した傾向が見られるが、その後はごく僅かな上昇が観察 される. 豊浦標準砂では、応力は緩やかな二次曲線的上昇が 見られる. また、ガラスビーズでは粒径によらず、温度低下 と共に一定の割合で側圧が発生するという結果が得られ、物 性の違いそのものが側圧の上昇に何らかの影響を与えるとも 考えられる.

4.NMR 法による不凍水分量との関係性

パルス型NMR 法によって計測された、0℃以下での不凍水 分量を以下の図-5 に示す.全ての試料で、0℃以下において も、不凍水が存在しており、特に凍上性の大きい、混合土E (100%)、土丹はその割合が大きい.

図-5 各試料の不凍水分量

ここから、供試体1 リングあたり、温度低下に伴って析出 する氷の容積を考える.析出する氷は、三軸方向配分はi) 熱流方向、熱流直交方向、等方に膨張、ii)熱流方向が熱流 直交方向の10 倍膨張、iii)熱流方向が熱流直交方向の20 倍 膨張、以上三つの場合を考え、半径方向の変位から、応力を 求め、実験データと比較した.例として、混合土A(0%) と寒天、それぞれ実験値との比較を図-6、図-7 に示す.

混合土A (0%) では実測値に対して,場合 ii)の応力増加の 推移が,よく似ている.また寒天では,実測値は場合 ii)と iii)の,およそ中間に位置している.ここから,今回は,非 凍上性試料のみであるが,側圧の増加に不凍水分のその場凍 結が関与してるのではないかと考えられる.しかし,不凍水 分量のみの影響だけでなく,土の物性値や,側方拘束圧等の 条件も影響を与えているのではないかと考えられる.

4. まとめと今後の展望

-426-

本研究では熱流直交方向に発生する応力に着目し,三軸凍上 試験を行い, NMR 法によって計測された不凍水分量との 関係を評価した. 今後は, 側方応力と不凍水分量との関係性 の追及や,その他関連性のあるパラメータを調査すること で,凍上現象の解析モデルの構築を目指していく. 参考文献

- 1) 地盤工学会北海道支部:寒冷地地盤工学 凍上被害とその対策
 -,中西出版,2009
- 2) 上田保司:土の凍結膨張による地盤変形および発生応力の予測 と対策に関する研究,京都大学大学院工学研究科学位論文, pp. 6,2007

-213