河川津波によるシェル構造ゲートの浮き上がりに関する実験的検討

(国研) 土木研究所

正会員 〇本山健士 正会員 中西哲 正会員 石神孝之

1. はじめに

先の東日本大震災では、海岸部の被害だけでなく、 河川を遡上・流下した津波によって、河川堤防等及 び沿川流域でも甚大な被害が生じた。これらを踏ま え、今後の河川管理においては、洪水や高潮だけで なく津波を計画的防御の対象として位置づける必要 性が指摘されるとともに、津波に対応した堰・水門 等の設計や操作のあり方等について基本的な考え方 が示された。

シェル構造ゲートと呼ばれるゲート形式は、ゲー トの径間が広く、かつ他の形式と比べて軽量化が可 能であることから、河口堰等の河川横断構造物とし て多く採用されている。これらのシェル構造ゲート も東日本大震災による津波により、ゲートが浮き上 がり、一時的な堰としての機能の低下などの被災が みられた。シェル構造ゲートは流水機能の確保のた め、下流側(海側)下部が開いている構造となって いる。この個所に津波の衝撃圧が加わり、ゲートが 浮き上がる現象が発生したと考えられる。これまで の検討により、シェル構造下面に作用する衝撃圧は、 ゲート正面とほぼ同時かつ同値であり、既存の津波 荷重推定式をほぼ下回る結果となることが確認され ている。1)

本検討では、シェル構造ゲートの浮き上がりにつ いて検討するため、津波がシェル構造ゲートに与え る鉛直荷重について水理模型実験により検討を行っ た。

2. 検討方法

水理模型実験に用いた水路は、図1に示すように、 水路幅 1.5m、水路長 51m の二次元水路部分とゲートに よって仕切られた貯水槽部分(幅1.5m、長さ15m)か らなるコンクリート製である。仕切りゲートはコンプ レッサーによって引上げられる方式とし、波状段波(ソ リトン分裂)~砕波段波の一連の津波変形を再現でき る機能を有する。水路縦断勾配は仕切りゲートを 0.0m とすると、0.0mから 5.0mまではレベルとし、5.0mか ら7.5mまではI=1/20、それより陸側はI=1/100である。 なお上流端は貯水槽となっている。

また、今回の実験ケースを表1に示す。初期水位は

図2 ゲート模型断面図

40 cm、ゲート位置は 19m であり、ゲートの前後の水位 はゲート天端高とほぼ同値とした。なお、実験のバラ ツキを抑制するためそれぞれのケースの実験を3回行 った。

実験に使用したシェルタイプゲート模型の断面図を 図 2 に示す。この模型形状は実際に東日本大震災時に 津波による浮き上がり被災を受けた堰を参考にした。 ゲート模型は木製であり、各部に曲率はつけていない。 この模型を水路全幅で波向き(津波入射方向)に直角 に設置した。

ゲートに作用する津波の衝撃圧は、ひずみゲージ式 圧力センサーによる測定を行った。衝撃圧計測位置は、 図 2 のゲート断面図中に示した赤丸のとおり、ゲート 各面での圧分布が計測できるようゲートまわりに 12基 設置した。各実験に際して、水路水深が設定水深に湛 水した後、圧力センサーをゼロセットし、津波衝撃圧 のみを測定した。また、水路内に容量式波高計を設置 し、波高を計測した。

キーワード:河川、津波、溯上、シェル構造ゲート

連絡先 〒305-8516 茨城県つくば市南原 1-6 TEL:029-879-6783 E-mail:k-motoyama@pwri.go.jp

-133

3. 結果

図3、図4に実験結果の代表例として、ケース1の波 高・波圧の計測結果を示す。図3より、津波が上流側 に遡上するにつれ、波が分裂し波高が高くなっている のが確認できる。また、図4よりゲート下面・正面に おけるピーク波圧は波高が最も高い津波第一波時、ゲ ート背面のピークピーク波圧は第二波時であるととも に、第二波時にゲート背面にて負圧が発生しているこ とが確認された。

シェル構造ゲートの浮き上がりについて検討するた め、各実験におけるゲートの単位幅あたりの鉛直荷重 を算出した。鉛直荷重の算出方法を式(1)に示す。 鉛直荷重は各圧力センサーで計測された圧力から各面 における鉛直荷重を計算し、それを合算して算出した。

$\mathbf{F} = \sum (PL \cos \theta) \tag{1}$

ここで、F:単位幅あたりの鉛直荷重(kN/m),P:実験時の 圧力(kpa),L:作用長さ(m)、圧力センサーの作用長さ であり、今回の実験では各面の長さをセンサーの数で 割り算出した。

また、実験時のゲート上下流の地点(18.9m、19.3m 地点)の波高をもとに修正谷本式²⁾を用い、実験値と 同様単位幅あたりの鉛直荷重を算出した。

図 5 にケース1における単位幅あたりの鉛直荷重の 比較結果を示す。図 5 より津波高の最も高い津波第一 波時に鉛直荷重が最も高いことが分かる。また、第一 波・二波において、修正谷本式・静水圧ともに実験結 果を下回る波圧となっているが、修正谷本式と静水圧 を足したものは実験値を上回っている。また、図 6 に 全ケースにおける実験値と計算値の比較を示す。図よ りすべてのケースにおいて、修正谷本式と静水圧を足 したものは実験値を上回っている。

よって、修正谷本式+静水圧でシェル構造ゲートの鉛 直荷重を算出することができる。

4. まとめ

河川津波によるシェル構造ゲートの浮き上がりにつ いて、水理模型実験をもとに検討した。

- 鉛直荷重のピークは津波波高のピーク時と同時である。
- 修正谷本式+静水圧でシェル構造ゲートの鉛直荷重
 を算出することができる。

参考文献

 中西哲、本山健士、石神孝之:シェル構造ゲートに作用する河川津波波力に関する水理実験,第36回日本自然災害 学会学術講演会講演概要集,p179-180

-266-