河川堤防の耐越水性向上に対するジオグリッドとドレーン層の影響に関する大型模型実験

東京理科大学大学院	学生会員	○佐藤 佑太
元東京理科大学大学院	正会員	倉上 由貴
東京理科大学	正会員	二瓶 泰雄

1. はじめに

H27年の鬼怒川堤防決壊をはじめとし、近年全国各地で 多発する豪雨災害を受けて、河川分野でも、津波対策と同 様に、計画規模(L1)のみならず、想定最大規模(L2)の 洪水に対する対策の重要性が指摘されている. L2 洪水に 対しては、浸水想定区域図の作成・公表などソフト対策が 進めれられる一方、危機管理型ハード対策として堤防の部 分的補強(天端,裏のり尻)による耐越水性向上が促進さ れている. このように, L2 洪水(超過洪水時)の越水対 策は提案されているものの、住民の避難時間をより長く確 保するため、越水や長時間浸透に対して粘り強く壊れにく く、かつ、経済面・維持管理面からも合理的な堤防強化技 術の開発・探求は今後も必要である.一方,著者らは,複 合型河川堤防として、ドレーン材とコンクリート製被覆 工、不織布、ジオグリッドを裏のり面に沿って配置した薄 層ドレーン強化堤防 (Laminar Drain Reinforced Levee, LDR 堤 防)を提案し、耐越水性が大きく向上することを確認した (倉上ら¹⁾).しかしながら、LDR堤防における各複合材 料の役割・効果が不明であることや、LDR 堤防では裏のり 面全体を補強するため危機管理型ハード対策のような部分 的補強とは構造的に異なるなどの課題があった.本研究で は、複合材料のうちのドレーン材の設置条件やジオグリッ

ドが LDR 堤防の耐越水性に及ぼす影響を検討することを 目的として、高さ 1mの大型模型を用いた越水実験を実施 した.

2. 実験概要·方法

大型模型の越水実験は、図-1に示す本学所有の大型水平 開水路(長さ20m, 高さ1.8m, 幅1.0m)を用いて行われ

た. この水路内に、厚さ0.30mの基礎地盤を下流端から長さ8.7m区間にわたり設け、高さ1.0m、天端幅1.0m、 2割勾配の堤体を作製した.堤体条件としては、図-2に示すように、通常の「基本LDR堤防」に加え、越水時 に弱部となる裏のり尻部のみ補強した「部分LDR堤防」,ドレーン層の無い「GRS堤防」の3ケースとした. 各ケースの構造の詳細としては、「基本 LDR 堤防」では、コンクリート製被覆工(厚さ 5cm)とドレーン材 (13-20mmの砕石)をジオグリッドで巻込み、堤体土内に敷設しており、被覆工の枚数はのり面方向に9枚と なった. ドレーン層と堤体土の間には,吸出し防止用に不織布を設置した. 次に「部分 LDR 堤防」では,裏 のり面下側のみに上記の構造を設置したものであり、被覆工枚数はのり面方向に5枚である。上部は、堤体土 がむき出しになると侵食されるため、ヘチマ構造のマット材であるコアマット(前田工繊㈱製)を敷設し細粒 分含有率 F₆=50%の高含水粘性土で充填した. 「GRS 堤防」では,基本 LDR 堤防からドレーン層を除去したも のである.

堤体土は、鉾田砂(細粒分含有率 Fc = 8.4% (基本 LDR, GRS 堤防)と 21.0% (部分 LDR 堤防))とし、締 固め度 D_c=90%とした.ジオグリッドとしてハイメッシュ(目合い 10×10 mm,前田工繊㈱製)を用い,敷設 長 20 cm とした. 流況条件は越流水深 h を段階的に増やし、t = 120 分以降は h = 25 cm と一定とした. また、基 本・部分 LDR 堤防では洗掘防止工がある時には侵食されなかったため、洗掘防止工を除去して、実験を再開 (時間をfとする)し、その時はh=25 cmで一定とした.計測には、堤体内の浸潤面計測用に水位計を最大24 台, 間隙水圧計7台を設置すると共に, 堤体侵食状況を把握するためにデジタルビデオカメラ7台を用いた.

キーワード LDR 堤防 耐越水性 ドレーン層 ジオグリッド 大型模型実験 〒278-0022 千葉県野田市山崎 2641 TEL:04-7124-1501(内線 4069)

3. 実験結果と考察

(1) 各ケースの堤体侵食状況の比較

ドレーン材の有無や配置条件が異なる各ケースにお ける堤体侵食形状を比べるために、堤体の面積残存率 の時間変化を図-3 に示す. この面積残存率とは、時々 刻々の堤体の横断面積を越水開始時の初期値で割った ものであり、堤防左側面からの動画より算出してい る. 図中には、各被覆工の流失時間も表示している. 洗堀工有の条件(図-3(a))では、基本・部分LDR 堤防 では面積残存率はほぼ100%を維持しほぼ侵食されてい ない. 一方, ドレーン層の無い GRS 堤防では, 越水開 始から経過時間 た88 分後に面積残存率が低下し、た103 分には決壊し、全9つの被覆工流失に7分間しかかから なかった.洗堀工無の基本・部分 LDR 堤防に関しては

(図-3(b)),面積残存率の減少と被覆工の流失が生じ ているが, t=90 分でも両ケース共に決壊していない. また両ケースの面積残存率の時間的推移や被覆工流失 の時間(被覆工3以外)は概ね一致した. これより部分 LDR 堤防の耐越水性は基本 LDR 堤防と概ね同程度であ ることが示された.

(2) 被覆工の変位と隙間状況

ドレーン材の有無が越水に対する粘り強さに及ぼす 影響を見るために、被覆工の変位(初期位置からの移 動距離)と被覆工間の隙間の相関図を図-4に示す.こ こでは、被覆工2の変位と被覆工2と3の間の隙間を例 示し、被覆工変位開始からの時間も表示している. こ れより GRS 堤防では、変位と共に隙間が短時間で大き くなるが、両 LDR 堤防では変位が大きくなっても隙間 は大きくならず、その状況を保つ時間も大幅に増加し ている.これは、被覆工は下側の堤体土の侵食に伴い 変位し始めるが、被覆工下部のドレーン層が侵食面に 合わせて変形し、ドレーン層の存在が堤体土の侵食を 抑制しているためであると考えられる.

(3)LDR 堤防の粘り強さ発現のメカニズム

各ケースの被覆工周辺の侵食状況を確認すると, GRS 堤防では被覆工間の隙間が発生すると越流水が侵 入し堤体土が侵食されるが、LDR 堤防ではそのような 状況は多くの場合見られない(図-5).そこで、被覆 工直下の間隙水圧を計測した結果(計測位置は図-2, 結果は図-3の黒矢印),隙間発生直後に GRS・基本 LDR 堤防共に負圧が発生するが、その低下量は GRS 堤 防の方が大きく、結果として侵入水量の増大と堤体土 の侵食を引き起こしているものと考えられる. この要 因としては、被覆工間に隙間ができると空気層の体積 増加に伴い圧力は低下するが、LDR 堤防ではドレーン 層内に不飽和の空気層が形成されているため、圧力低 下量が抑制されたものと考えられる. この効果により, 前節で示した LDR 堤防における被覆工間の隙間増加 抑制にもつながる.

参考文献

1) 倉上由貴,二瓶泰雄,森田麻友,菊池喜昭:耐越水性・耐浸透性を兼ね備えた薄層ドレーン強化堤防の提案, ジオシンセティックス論文集, Vol.31, pp.191-198, 2016.

図-4 被覆工 2 の変位と被覆工 2-3 間の隙間(図中の数値 は被覆工変位開始からの時間)

図-5 排水層の有無による被覆工周辺の侵食状況の変化