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A New Model of Subsurface Flow in an Unconfined Surface Soil Layer on an Irregular Hillslope
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1 Introduction

To better assess hillslope stability for landslide
prediction, we would like to develop a three-
dimensional model for shallow groundwater flow in a
surface soil layer on an irregular hillslope. In terms of
the assumption of shallow groundwater flow, we
derived a new and Boussinesq-type perturbation
solution of hydraulic head as well as a depth-averaged
equation of groundwater table evolution. For numerical
solutions, we used the leading-order evolution equation
having a strong advection term, a nonlinear diffusion
term and a source term. To tackle efficient and accurate
calculation efficiency, we proposed a new and high
resolution Godunov-type finite volume scheme with
specific treatments to the nonlinear diffusion term for
assuring the property of numerically well-balancing.
Some cases are conducted for verification of the new
model we proposed. This work is supposed to provide
a new three-dimensional theory of groundwater motion

and a corresponding numerical model.

2 Fundamental theory
Governing equations

We consider a thin sloping aquifer with the
characteristic length L =0(10) m and thickness
H = 0(1) m. Applying the depth-averaging method
with kinematic and dynamic boundary conditions
yields the governing equation of phreatic surface

evolution as

a
S5 =V @=bVn+y, (1)

where a two-dimensional Laplace operator,
5 = (29 20
V()_(axiay): (2)

and 7 is the groundwater table [m], b is the aquifer

bed [m], S is the porosity [-], and ¥y = I'L?/koH? is

the normalized rainfall recharge where k, and I’ are
the aquifer’s hydraulic conductivity [m s™'] and the rate
of rainfall [m s™'], respectively. Equation (1) is verified
to be equal to the classical solutions (Parlange et al.,

1984; Chen and Liu, 1995).

3 Numerical scheme
To find numerical solutions, we used the leading-order

equation of groundwater depth evolution, as below

2~V HV(H +b) +7, 3)

where H =1 — b is the total groundwater depth [m].
Equation (3) is a nonlinear advection-diffusion
equation with a source term. To achieve efficient
computation, an explicit scheme is adopted. With
specific treatments for the nonlinear diffusion term and
for assuring well-balancing property, a new Godunov-

based relaxation scheme in the high resolution

(LeVeque, 2002) is adopted to numerically solve (3).

4 Case study of different rainfall recharge

We consider an aquifer inclining at 30" with a
constant hydraulic conductivity of ko = 1.0 x 1073
and porosity of S = 4.0. An time variation of the peak
rainrate value is assumed as is shown in Fig. 1. Four
rainfall distributions are considered, including no
rainfall, uniform, quadratic, and linearly decreasing
distribution, as are shown in Fig. 2. We successfully
obtain the hydrograph of volumetric discharge as well

as the groundwater table of time variation.

4 Expected Results
A new model of shallow groundwater motion in an
unconfined sloping aquifer with a spatial-varying

rainfall recharge has been developed.
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Fig. 2 The second-minute Groundwater table (red lines), the initial groundwater table (black dotted line) and
rainfall patterns (blue bars) of (a) no rainfall, (b) uniform, (¢) quadratic, and (d) linear distributions with a peak
rainrate of 200 mm in the aquifer inclining at 30° and with a porosity S = 4.0 and of k, = 1.0 x 1073, The
corresponding outflow volumetric discharge (green lines) and downstream-boundary groundwater tables (red

lines) of time variation under the (e) no rainfall, (f) uniform, (g) quadratic, and (h) linear rainfall distributions.
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