衝撃弾性波法による鋼板とコンクリート間の接着剥離箇所の評価

立命館大学	学生会員	○康田	雄太
立命館大学	正会員	川崎	佑磨
立命館大学	正会員	伊津野	和行

1. はじめに

1995年の兵庫県南部地震では、多数の橋梁に甚大な 被害を受けた.それに伴い、多くの橋脚に耐震補強が施 された.補強工法として RC 巻き立て工法、鋼板巻立て 工法および炭素繊維巻き立て工法などが代表的なもの として挙げられる.既設 RC 橋脚の耐震性を向上させる ための有効な方策として、鋼板巻立て工法による補強 が多く実施されている¹⁾.しかし、近年では、鋼板巻立 て工法が施された橋脚において、鋼板とコンクリート 間で腐食が発生している事例も報告されている²⁾.この ように、経年劣化や地震動による影響から、内部に劣化 や腐食が生じた場合、鋼板とコンクリート間の接着状 態を外部から把握することは困難である.

そこで本研究では,非破壊試験法の衝撃弾性波法を 用いて,鋼板とコンクリート間の接着剥離面積が弾性 波の諸特性に与える影響について確認した.

2. 実験概要

2.1供試体

本研究では鋼板巻立て工法を想定した供試体を作製 し,鋼板とコンクリート間に空洞を設けた. コンクリー ト供試体(900×900×300mm)を作製し,鋼板 (800×800×9mm)を表面と裏面の2面に接着させた. 供試体の種類は健全タイプ(S),剥離タイプ(del)の2 タイプとした.鋼板を400×400mmに4分割して計測を

写真-1 実験状況

行った.その4分割された断面の中心に,面積の異なる アクリル枠をエポキシ樹脂層(コンクリートと鋼板の 間)に設置して空洞を模擬した.空洞の大きさは**表-1**に 示す.

2. 2 測定方法

衝撃弾性波法の実験状況を写真-1 に、AE センサの配 置位置を図-1 に示す.1つの検査領域(400×400mm)内 で、AE センサの励起点は供試体中央、計測センサは空 洞を通る直線状と健全部を通る直線状に配置させ、励 起点から等距離の位置に対応するセンサを配置した. 本実験では各 AE センサの弾性波初動部到達時間を明 確にするため、TRA モードという計測方法で実験を行 った.TRA モードとは、励起点から一番近い AE セン サが弾性波を検知すると同時に、その他の AE センサの 計測を開始する計測方法である.本研究では物理的な 衝撃を与えず、ファンクションジェネレータによる励 起を採用した.励起させる弾性波は、振幅値 2.5V、周 波数 50kHz の正弦波で1波長とした.

表-1 空洞の大きさ

空洞箇所	高さ (mm)	幅 (mm)	割合
検査断面	400	400	100%
del.1	100	20	1%
del.2	100	40	3%
del.3	100	80	5%
del.4	100	160	10%

キーワード 非破壊試験,衝撃弾性波法,鋼板巻立て工法,周波数解析 連絡先 〒525-8577 滋賀県草津市野路東1-1-1 インフラマテリアル研究室 TEL077-561-2666

図-2 del.1 の 3ch と 6ch の検出波形

3. 実験結果

3.1検出波形の比較

励起点から等距離の位置にあるセンサの検出波形に ついて比較した.図-2は、一例として、検査領域 del.1 の 3ch および 6ch の検出波形を示している.図-2の健 全タイプと剥離タイプの検出波形の第1 波は大きな変 化がなく、第2 波は健全タイプと剥離タイプに相違が 確認された.3ch の検出波形の第2 波は剥離タイプの振 幅値が大きくなっている.これは空洞による反射によ り第2波が大きくなったと考えられる.6ch の剥離タイ プと健全タイプの検出波形の第2 波に相違が確認され た.これは、樹脂層で増幅される波の影響により、剥離 タイプの検出波形の第2 波が小さくなったと考えられ る.6ch は空洞直上に配置しているため、樹脂層の波が 6ch に伝達されにくいと推測した.

3. 2周波数解析による評価

周波数解析では、代表波形に対して、フーリエスペク トル解析を行い、その波形の周波数特性について検討 した.入力波形の周波数 50kHz に近い領域における卓 越周波数を比較した.各供試体の 3ch および 6ch のフ ーリエ解析した振幅スペクトルを図-3 および図-4 に示 す.健全周辺 3ch と空洞周辺 6ch の振幅スペクトルを 比較すると、健全周辺 3ch では、50~100kHz 周辺で剥離 タイプの振幅スペクトルが高くなっている.これは空 洞の反射波による干渉の影響により、剥離タイプの振 幅スペクトルが高くなっていると考えられる.空洞周

図-4 各供試体の 6ch の振幅スペクトル

辺 6ch では, 健全タイプの振幅スペクトルが高くなっ ている. 空洞周辺は弾性波が伝搬しにくいため, 空洞直 上にある 6ch の振幅スペクトルが低くなったと考えら れる. また, 伝搬経路は明確になっていない点もあるた め, 数値解析などで確認する予定である.

4. まとめ

衝撃弾性波を用いて鋼板とコンクリート間の空洞箇 所の評価の可能性について検証した.得られた結果を 以下に示す.

- (1) 剥離タイプと健全タイプの検出波形の第2波に相違が確認された.これは、空洞の反射が原因ではないかと考えている.すなわち、検出波形の第2波により、欠陥部を評価できると考えた.
- (2) 空洞の反射によって振幅スペクトルが高くなると 示唆した.しかし、空洞の大小による変化が見られ なかったため、今後、励起波の周波数や励起方法を 変更して検討する予定である。

参考文献

- 鈴木直人,幸左賢二,藤井康男,澤田吉孝:鋼板巻 き立て補強橋脚の変形性能に関する検討,コンク リート工学年次論文報告集, Vol.21, No.3, 1999.
- 岡本典之,斎藤博行,知崎桂三,冨松泰秀:報告 震 災を受けた補強済橋脚の鋼板撤去調査,コンクリ ート工学 年次論文報告集, Vol.21, No.3, pp.1363-1368, 1999.