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1. Introduction 

 The effects of near-fault ground motions with and without 

considering the fling-step displacement on the seismic 

behaviors of a bridge are very important and can cause 

serious damage or collapse of bridge due to both ground 

acceleration and fault ruptures (permanent displacement). 

However, little has been done to evaluate the effects of focal 

mechanism on the seismic response of a fault-rupture 

crossing bridge. In order to explore these effects, parametric 

study was conducted based on various strike-, dip-, and 

rake- angles. The evaluation was focused on the maximum 

curvature and maximum strain of the piers in this research. 

2. Methodology 

 In this paper, aimed at investigating the effects of the 

focal mechanism of fault rutprue on the seismic response of 

a 5-span simple isolated bridge (the image of the bridge is 

shown in Table 1), the near-fault seismic displacement 

waveforms were obtained based on a hybrid synthesis 

method [1], which combined a corrected stochastic Green’s 

function method [2][3] with a theoretical method [4]. Then, 

based on the multiple-support excitation method by Chopra 

[5], the nonlinear time history analysis was conducted by the 

OpenSees [6]. 

3．Cases for numerical calculation 

 The parametric study was performed for various strike- 

(Case 1), dip- (Case 2) and rake-angles (Case 3). Due to the 

limited space, only Case 3 will be presented here (Table 1). 

Relative displacement between P3 and P2 for Case 3 with 

and without permanent displacements are plotted in Fig. 1. It 

well illustrates that the relative displacements of the piers 

were much larger for the case with both the static and 

dynamic displacements than for the case with only the 

dynamic term. 

Table 1 Different rake angles for case study 
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Fig. 1 Relative displacement of P3 and P2 under various γ 
(left: dynamic term; right: static and dynamic terms) 

4. Results of numerical calculation 

The nonlinear behavior of the piers could be significantly 

dependent on the dynamic axial force during earthquakes. 

This effect is considered in the numerical calculation, while 

the curvatures corresponding to the limit states, which are 

calculated by the push-over analysis and the displacements 

corresponding to the limit states [7], do not necessarily 

represent these effects. On the other hand, if we consider the 

strain or the normalized strain (the ratio to the yield strain) 

corresponding to the limit states [8], more rational 

comparison can be made between the calculated response 
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and the limit states. The results will be presented for P2 and 

P3, which are located very near the fault plane. Fig. 2 shows 

the maximum curvature in Case 3. The limit states 2 and 3 

were obtained by the push-over analysis and the 

displacements corresponding to the limit states [7]. It 

illustrates that, all the piers under different rake angles are 

within the limit state 2, and with some cases within the yield 

level. The effects of the rake angle are greater on the 

maximum Cz in Fig. 2 (a) (curvature along the longitudinal 

directions) than on the maximum Cx in Fig. 2 (b) (along the 

transverse directions) mainly due to the relatively large 

stiffness along the transverse directions. The maximum 

normalized strain at the monitor points on the cross section 

of P2 and P3 shown in Fig. 3 (a) under various rake angles 

are compared with the normalized strain corresponding to 

the limit states [8] in Fig. 3 (b) ~ (e). Compared with the 

evaluation results for the maximum curvature above, there 

are significantly different behaviors. The maximum 

normalized strain under the rake angle -60o with fling-step 

displacement for P3 is beyond the limit state 3 as shown in 

Fig. 3 (d). Additionally, there are several cases exceeding 

the limit state 2 as highlighted in Fig. 3 (d). The comparison 

made in Fig. 3 is more reasonable than that in Fig. 2, 

because the effect of axial force is appropriately included.
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Fig. 2: Maximum curvature under various γ 
(left: Cz along longitudinal directions; right: Cx along transverse direction) 
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Fig. 3 Case 3: (b) (d): Maximum normalized strain distribution of Pier 2 and Pier 3 

(c) (e): the related time history of the maximum strain 
Note: s: static, d: dynamic, ls: limit state. 

5. Conclusions 

The effects of focal mechanism on the seismic behaviors 

of a fault-rupture crossing bridge were evaluated in this 

paper. The results indicated the importance of considering 

fling-step displacements. In addition, the limit states should 

be specified by the normalized strain. 
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