各種発泡体の緩衝挙動評価に関する衝撃載荷実験

室蘭工業大学大学院	正会員	○栗橋	祐介	(株) JSP	非会員	小暮	直親
(株) JSP	非会員	新田	真一	室蘭工業大学大学院	正会員	小室	雅人
室蘭工業大学大学院	学生会員	戸上	卓也				

1. はじめに

本研究では、圧縮強度特性の異なる各種発泡材料の緩 衝効果を検討することを目的に、発泡材料の種類および 落下高さを変化させ、重錘落下衝撃実験を行った.また、 伝達衝撃応力を分散するための表層材を積層する場合に ついても実験を行い、緩衝性能に及ぼす発泡材料の圧縮 強度特性の影響について比較検討した.

2. 実験概要

表1には,発泡材料の主成分と発泡倍率を一覧にして示 している.表2には,試験体の一覧を示している.試験 体数は,表層材の有無,発泡材の種類,設定重錘落下高さ をそれぞれ変化させた全22ケースである.表2において 試験体名の第一項は表層材の有無(N:なし,C:あり),第 二項は発泡材料の種類(表1参照)を表している.図1に は,各種発泡材料の圧縮応力-ひずみ関係を示している.

図2(a), (b) には, 試験体と伝達衝撃応力測定の概要を示 している. 試験体は, 平面寸法 240 mm 四方, 厚さ 50 mm とし, 表層材は厚さ 12.5 mm の石膏ボード (JIS A 6901 適 合品)を発泡体の上に設置した. 図2(c) に示しているよう に, 実験は質量 20 kg, 先端直径 60 mm の鋼製重錘を所定 の高さから発泡体の中央部に自由落下させる形で行った.

実験では,発泡体の最大貫入ひずみが75%を超過した 時点を終局状態と定義した.なお,**表2**より,ESTを用 いる場合が最も緩衝性能に優れることや,発泡材料によ らず表層材を設置することで緩衝性能が向上することが 分かる.本実験における測定項目は,重錘衝撃力,重錘 貫入量および伝達衝撃応力である.

3. 実験結果および考察

図3には、重錘衝撃力、重錘貫入量および伝達衝撃応力

キーワード:発泡材料,芯材,応力分散,緩衝性能

種充泡材料の圧縮応力-ひすみ関係 図 2 試験体と伝達衝撃応力測定の概要

連絡先:〒050-8585 室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット TEL/FAX:0143-46-5225

表	1	発泡	材料	の材	料特性

発泡材料 の種類	主成分	発泡倍率
ST	ポリスチレン	50
PP	ポリプロピレン	45
EST	ポリエチレン・ポリスチレン複合体	30

表 2 試験体一覧			
試験体名	表層材	発泡材料	金紙荘下古る(一)
	の有無	の種類	里娷洛下尚さ (mm)
N-ST		ST	50, 100, 150, 200
N-PP	なし	PP	50, 100, 150
N-EST		EST	50, 100, 150, 200, 300
C-ST		ST	200, 300, 400
C-PP	あり	PP	200, 300
C-EST		EST	200, 300, 400, 500, 600

の時刻歴応答波形の一例を示している.図より,表層材な しの場合の重錘衝撃力波形は最大振幅2kN程度,継続時 間50~75 ms程度を示していることが分かる.また,圧 縮強度が大きい場合ほど,立ち上がり勾配や最大衝撃力が 大きく,かつ主波動継続時間は短くなる傾向にあること が分かる.また,表層材ありの場合は重錘衝突直後,急 激に2kN程度まで増加し,その後一度除荷状態になり, 再度載荷状態を呈している.これは,**写真1**に示してい るように重錘が表層材に衝突し突き抜けた後,発泡体を 変形させているためである.重錘貫入量および伝達衝撃 応力に関する応答波形は,表層材の有無にかかわらずほ ぼ同様の性状を示している.これは,重錘衝突直後に表

層材が押し抜け、その後表層材なしの場合と類似の変形 挙動を示したことによるものと考えられる.

4. 応力分散係数と最大貫入ひずみの推定

4.1 応力分散係数

ここでは,伝達衝撃応力の分散度合いを評価するために 下式 (1) により応力分散係数 α を求める.また,**表3** に は各試験体での最大落下高さにおける α を一覧にして示 している.

$$\alpha = \frac{E_k}{E_{a1}} \tag{1}$$

ここで、 E_k : 発泡体の全吸収エネルギー (=入力エネル ギー)、 E_{a1} : 実験結果から算定した重錘直下の吸収エネル ギーである. **表3**より、表層材を設置することにより各 発泡体の応力分散係数が2倍程度増加していることが分 かる.このことから、表層材を積層することによって伝 達衝撃応力の分布範囲が広くなり、エネルギー吸収能の 向上効果が効率的に発揮されることが分かる.

4.2 最大貫入ひずみの推定

ここでは、上述の応力分散係数αと圧縮応力-ひずみ 関係(図1)を用いて、最大重錘貫入ひずみを算定し、実 験結果と比較検討する.

図4には、各入力エネルギー Ek に対する最大貫入ひず

図4 重錘貫入量-入力エネルギー関係

み ε_p の実験結果をプロットし、計算結果による貫入ひず みー入力エネルギー曲線と比較して示している。計算結果 は、任意の貫入ひずみ ε における入力エネルギー E を下 式 (2) により求め、 ε - E 曲線として示したものである。

$$E = \alpha \times S_a(\varepsilon) \times H \times A \tag{2}$$

ここに、 $S_a(\varepsilon)$: 材料試験結果(図1)に基づく圧縮応力-ひずみ関係における任意のひずみ ε までの積分値、H: 発 泡体の高さ、A: 重錘底面の面積である.また、 α には各 発泡体における最大落下高さ時の値を用いた.図4より、 いずれの試験体においても実験および計算結果ともに、表 層材ありの場合が表層材なしよりも同一入力エネルギーに おける貫入ひずみが小さくなっていることが分かる.計 算結果は実験結果の最大で 30% 程度大きい場合も見受け られるものの、入力エネルギーの増大に伴う貫入ひずみ の増加傾向は概ね対応している.従って、本研究の条件 下においては、応力分散係数 α を適切に設定することで 最大重錘貫入ひずみ ε_p を最大で 30% 程度の安全余裕度 を持って評価できることが明らかになった.

5. まとめ

- 発泡材の種類によらず、表層材を積層するとエネル ギー吸収能が倍増する。
- 応力分散係数 α と発泡材料の圧縮応力-ひずみ関係を 用いて最大貫入ひずみを安全側で評価可能である。