CFRP シートおよびロッドを用いて曲げ補強した RC 梁の耐衝撃性に関する実験的検討

西松建設(株)	正会員	\bigcirc	船木	隆史
室蘭工業大学大学院	正会員		栗橋	祐介
三井住友建設(株)	フェロー		三上	浩

室蘭工業大学	フェロー	岸	徳光
室蘭工業大学大学院	正会員	小室	雅人

表 1 試験体一覧

1. はじめに

本研究では、CFRP 補強材の形状が耐衝撃性向上効果に 及ぼす影響を比較検討することを目的に、CFRP シート/ ロッドを用いて曲げ補強した RC 梁を対象に重錘落下衝撃 実験を行った。

2. 実験概要

表1には,試験体の一覧を示している.表中の試験体の うち,第一項目は曲げ補強の有無(N:無補強,CS:CFRP シート下面接着,CR:CFRPロッド下面埋設)を示し,第 二項目は載荷方法(S:静載荷,I:衝撃載荷),第三項目の Hに付随する数値は設定重錘落下高さ(m)を示している.

図1には、試験体の形状寸法と配筋および補強状況を示 している.本実験に用いた試験体の形状寸法(梁幅×梁高 ×スパン長)は、200×250×3,000 mm である.また、軸 方向鉄筋は上下端に D19を各2本配置し、梁軸方向端面 に設置した厚さ9 mm の定着鋼板に溶接固定している.さ らに、せん断補強筋には D10を用い、100 mm 間隔で配筋 している.CFRPシートは目付量 600 g/m² であり、CFRP ロッドの場合には直径 8.5 mm のロッドを2本用いた.引 張耐力は、それぞれ 226.4, 228.2 kN である.

静載荷実験は,梁幅方向に 200 mm,梁長さ方向に 100 mm の載荷板をスパン中央部に設置し,容量 500 kN の油 圧ジャッキを用いて行った.一方,衝撃荷重載荷実験は, 質量 300 kg,先端直径 200 mm の鋼製重錘を所定の高さ から一度だけ自由落下させる単一載荷法に基づいて行っ ている.なお,重錘落下位置は梁のスパン中央部に限定し ている.また,試験体の両支点部は,回転を許容し,浮き 上がりを拘束するピン支持に近い構造となっている.

3. 実験結果

3.1 荷重-変位関係

図2には、CFRP 補強材で曲げ補強した RC 梁と無補強 RC 梁の荷重-変位関係に関する実験結果を示している. 図より、補強試験体に着目すると、載荷荷重はひび割れ発 生後から主鉄筋降伏点近傍まで線形に増加していること がわかる.その後、主鉄筋降伏前の勾配よりも小さい勾配 で単調に増加し、最大荷重到達後に CFRP シート/ロッド の剥離によって終局に至った.無補強試験体と比較する と、CFRP シート/ロッドを用いて曲げ補強することによ

試験	設定重錘	補強材の	コンクリート	主鉄筋			
体名	落下高さ	軸剛性	圧縮強度	降伏強度			
	$H(\mathbf{m})$	$E_r A$ (MN)	f_c' (MPa)	f_y (MPa)			
N-S	静的	-	32.4	381.7			
N-I-H2.5	2.5						
SC-S	静的	16.3	32.4	381.7			
SC-I-H1.0	1.0						
SC-I-H2.0	2.0						
SC-I-H2.5	2.5						
SC-I-H3.0	3.0						
CR-S	静的	16.0	32.8	402.6			
CR-I-H1.0	1.0						
CR-I-H2.0	2.0						
CR-I-H2.5	2.5			406.7			
CR-I-H3.0	3.0			402.6			

図1 試験体概要

り主鉄筋降伏荷重は 30 % 程度,最大荷重は 47 ~ 49 % 程 度増加していることが分かる.また,CFRP 補強材は形状 によらず補強材の剥離によって終局に至ることが明らか になった.

3.2 各種時刻歴応答波形

図3には、衝撃荷重載荷実験時に CFRP ロッドが破断した設定重錘落下高さ H = 2.5 m の場合における各試験体の重錘衝撃力波形,支点反力波形,載荷点変位波形を比較して示している.

キーワード:RC梁, CFRPシート接着工法, CFRP ロッド埋設工法, 曲げ補強, 耐衝撃性, 重錘落下衝撃実験 連絡先:〒050-8585 室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット TEL/FAX:0143-46-5225

図 3 時刻歴応答波形 (H = 2.5 m)

図3(a)より,重錘衝撃力波形は,補強の有無や補強材の 種類によらず,振幅が大きく継続時間が1ms程度の第1 波に振幅が小さい第2波目が後続する性状を示している ことが分かる.これは,いずれの梁も圧縮強度が同程度の コンクリートであることより,衝撃初期の重錘衝撃力波 形は衝突部コンクリートの材料物性に依存していること を暗示している.

図3(b)より,支点反力波形は,継続時間が30~50 ms 程度の主波動に高周波成分が合成された分布性状を示し ていることが分かる.なお,CR 試験体の場合にはロッド 破断に至っているが,この時点では支点反力波形に対す る影響が小さいものと考えられる.

図3(c)より,載荷点変位波形は,いずれの試験体においても最大振幅を示す第1波が励起した後,減衰自由振

図4 入力エネルギーと各種応答変位の関係

動状態に至っていることが分かる.また,CS/CR-I 試験体は,N-I 試験体よりも応答変位が小さいことから,シート /ロッド補強により変形が抑制されていることが分かる. なお,前述の通り,CFRP ロッドは破断していることから,応答変位は CR 試験体の場合が CS 試験体よりも大きい.

これらのことから, CFRP 補強材を用いることによりで, RC 梁の耐衝撃性を向上可能であることが明らかになった. ただし, H = 2.5 m において CFRP ロッドが破断するの対 し CFRP シートは破断していないことから, CFRP ロッド の耐衝撃性向上効果は CFRP シートを用いる場合に比し て低いことが明らかになった.

3.3 入力エネルギーと各種応答変位の関係

図4には、補強試験体に関する入力エネルギーと最大/ 残留変位の関係を示したものである。

図4(a)より,最大変位は両試験体ともに入力エネルギー の増加に伴ってほぼ線形に増加している.図4(b)より, 残留変位はCFRPシート/ロッドが剥離破断した場合を除 くと,両試験体で同一の勾配を有しほぼ原点からの線形 分布を示していることが分かる.この傾向は,無補強RC 梁に関する著者等の研究成果と同様の特性を示しており, 入力エネルギーと残留変位,補強後の梁の静的耐力を用 いた耐衝撃設計法の定式化の可能性を示唆している.

- 4. **まとめ**
- 静載荷実験の場合には、ほぼ同程度の髷補強効果を発 揮し、CFRP 補強材の形状によらず、いずれの試験体 も補強材の剥離により終局に至る。
- 2) 衝撃載荷実験の場合には、重錘落下高さ H = 2.5 m に おいて CFRP ロッドが破断するの対し CFRP シート は破断していない. このことから、CFRP シート接着 補強による耐衝撃性向上効果はロッド下面埋設補強に 比較して優れていることが明らかになった。

謝辞

本研究は JSPS 科研費 JP15K06199 の助成により行われ たものである.ここに記して感謝の意を表する.