AFRP シートで曲げ補強した鋼繊維補強無孔性コンクリート梁の耐衝撃性

室蘭工業大学大学院	学生会員	○木内	洋介	室蘭工業大学大学院	正会員	栗橋	祐介
太平洋セメント(株)	正会員	河野	克哉	室蘭工業大学大学院	正会員	小室	雅人
太平洋セメント(株)	正会員	安田	瑛紀				

1. **はじめに**

近年,300~400 MPa 程度の世界最高水準の圧縮強度を 有する無孔性コンクリート (PFC) が開発されている.本 研究では、アラミド繊維 (AFRP) シート補強した PFC 梁 の耐衝撃挙動を検討することを目的に、鋼繊維混入率の 異なる PFC 梁を対象に AFRP シート曲げ補強を施し、重 錘落下実験を実施した.

2. 実験概要

表1には, PFC の配合を示している. 表に示している ように結合材 (B) には、低熱ポルトランドセメント (L)、 石英微粉末 (Q) およびシリカフューム (SF) を, 細骨材に は珪砂 (S) を, 混和剤には高性能減水剤 (SP) ならびに消 泡剤 (DF)を用いた。また、鋼繊維 (F) は外割で1もしく は2% 混入した. 表2には、本実験に用いた AFRP シー トの力学的特性値を示している.

表3には、試験体の一覧を示している. 試験体名の第1 項目は、コンクリートの種類と鋼繊維混入率(%)の組み 合わせを示している。また、第2項目のHに付随する数 値は, 重錘落下高さ H (mm) である. 図1 には, 試験体の 形状寸法を示している. 試験体の形状寸法 (幅 × 高さ × スパン長)は、100×25×500mmである。AFRPシート は、梁下面の幅方向に全域、軸方向には中央部から両支 点側に 220 mm の範囲に接着し, シート上には検長 10 mm のひずみゲージを 20 もしくは 30 mm 間隔で貼付した.

図1 試験体の形状寸法と補強概要

表 2 AFRP シートの力学的特性値 (公称値)									
繊維 目付量 (g/m ²)	保証 耐力 (kN/m)	厚さ (mm)	引張 強度 (GPa)	弾性 係数 (GPa)	破断 ひずみ (%)				
280	392	0.193	2.06	118	1.75				

表 3	試駁	体の一覧	ī	
試験体名	AN AN	鋼繊維 昆入率 (%)	重錘 高 <i>H</i> (i落下 fさ mm)
PFC0-H150/300		0	150, 3	00
PFC1-H300/450/600		1	300, 4	50, 600
PFC2-H300/450/600		2	300, 4	50, 600

計管耐力の 一覧

	23. 7	□并则/」// 見	,
試験体の 種類	曲げ耐力 P _u (kN)(1)	せん断耐力 V _u (kN) (2)	せん断余裕度 α (2)/(1)
PFC0	7.52	16.3	2.16
PFC1	8.45	35.1	4.15
PFC2	9.32	53.1	5.70

表4には、計算耐力の一覧を示している. PFC と AFRP シートは、計算終局時まで完全付着状態にあるものと仮 定した.計算結果より、いずれの試験体も静載荷時には 曲げ破壊で終局に至る設計となっていることが分かる.

衝撃載荷実験は、質量 20 kg,先端直径 60 mm の鋼製重 錘を所定の落下高さからスパン中央部に一度だけ自由落 下させる単一載荷法により行った。

3. 実験結果

図2には、各試験体の重錘衝撃力、支点反力および載荷 点変位に関する時刻歴応答波形を示している。

図より, 重錘衝撃力波形は, PFC0-H300 および PFC1-H600 試験体を除き、重錘衝突時に継続時間が極めて短く 振幅の大きい波形が励起した後、継続時間が15 ms 程度 で振幅が10kN程度の主波動が励起していることが分か る。なお、PFC0-H300 および PFC1-H600 試験体は、経過 時間 10 ms 程度で重錘衝撃力が急激に低下した.これは,

								表 1	配合				
	単位量 (kg/m ³)												
	名称	W/B		В							フロー *2	空気量 * ³	圧縮強度
		(%)	W	L	Q	SF	S	F	SP*1	DF^{*1}	(mm)	(%)	(N/mm^2)
	PFC0							0	$B \times 2.2 ~\%$	$B\times 0.02~\%$	233	3.8	327
	PFC1	15	199	876	347	102	927	78 (外割1%)	B imes 2.5 %	$\rm B \times 0.02~\%$	269	3.7	351
	PFC2							157 (外割2%)	B imes 2.5 %	$\rm B \times 0.02~\%$	268	3.4	336
*1:	1: W の一部に内割置換, *2: 落下振動を与えないフロー試験による値 (JIS A 5201 準拠), *3: 空気室圧力法												

キーワード:無孔性コンクリート,鋼繊維,AFRP シート,曲げ補強,耐衝撃性 連絡先:〒050-8585 室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット TEL/FAX 0143-46-5228

(b) PFC1-H600 試験体(シート破断) (c) PFC2-H600 試験体(シート破断なし 図3 実験終了後における各試験体の破壊性状

PFC 梁のせん断破壊や AFRP シートの破断により,梁の 抵抗力が消失したことによるものと考えられる.

支点反力波形は、PFC0-H300 および PFC1-H600 試験体 を除き、継続時間が 15 ms 程度で最大振幅が 20 ~ 30 kN の主波動が励起しており、その最大振幅は落下高さの増 大に伴って大きくなる傾向を示している。PFC0-H300 お よび PFC1-H600 試験体の場合は、重錘衝撃力波形の場合 と同様に経過時間 10 ms 程度で急激に低下している。

載荷点変位波形も、PFC0-H300 および PFC1-H600 試験 体を除き、継続時間が 15 ~ 20 ms 程度の正弦半波が励起 しており、その振幅は落下高さの増大に伴って大きくな る傾向にある.また、落下高さ H = 300 mm においては、 PFC0-H300 試験体の変位が大きく残留しており、実験で はせん断破壊に至っていることを確認している.

落下高さ H = 600 mm においては、PFC1-H600 試験体 の最大変位が PFC2-H600 試験体の場合よりも大きく、そ の後変位が 5 mm 程度復元するものの大きく残留してい る. これは、後述するように、AFRP シートが破断したこ とによるものである.

図3には、ひび割れやシート破断、および残留変形などの損傷が顕著に見られた、PFC0-H300, PFC1/2-H600 試験体に関する実験終了後の破壊性状を示している.

図より, PFC0-H300 試験体の場合には, 左右のせん断 スパンの中央部周辺に斜めひび割れが発生しており, 上面 では PFC が広範囲に渡って剥落していることが分かる.

PFC1-H600 試験体の場合には,左右対称の曲げ変形が 残留しており,載荷点近傍においては梁側面にひび割れ の開口,底面のシートには破断が見られる.このことか ら、シートの付着は破断時まで十分に確保されていたこ とが分かる.また、PFC0-H300 試験体に見られたひび割 れや剥離は見られない.これは、鋼繊維の架橋効果が発 揮されているためである.

また, PFC2-H600 試験体の場合には, PFC1-H600 試験 体に見られた著しい残留変形やシートの破断は見られな い. これは, 鋼繊維混入率を大きくすることにより, PFC のひび割れ発生後における架橋効果が発揮されるため, ひ び割れの開口が抑制されて, AFRP シートの引張応力負担 が低減されたことによるものと考えられる.

これらのことから, PFC への鋼繊維混入により, 負曲 げによる曲げひび割れや, せん断ひび割れが抑制される ことが明らかになった. また, 鋼繊維混入率を大きくす ることにより, AFRP シートの引張応力負担が低減され シートの破断が抑制されることが明らかになった.

なお,**表**4の計算結果では,いずれの試験体も静的設計 上の破壊モードは曲げ破壊型となっている.これに対し, PFC0 試験体はせん断破壊に至っている.この破壊モード の相違には載荷方法の違いが影響を与えているものと考 えられる.

- 4. まとめ
- 鋼繊維混入率を大きくすることにより、PFCのひび 割れ発生後における架橋効果が発揮されるため、梁 のせん断抵抗性が向上するとともに、AFRPシートの 引張応力負担も低減される。
- 2) AFRP シートと無孔性コンクリートの付着性能は, シート破断に至るまで十分に確保されている.