砂を対象とした重錘落下衝突実験の再現解析

東電設計(株) 正会員 〇山川 大貴 東電設計(株) 正会員 山谷 敦 伊藤忠テクノソリューションズ(株) 正会員 松澤 遼 防衛大学校 正会員 別府 万寿博

1. 背景および目的

飛来物等の衝突に対する RC 構造物の安全性を評価す る際、裏面剥離や貫通等の局所的損傷に対しては、飛 来物の条件とコンクリートの物性等から評価式を用い て損傷が生じない最小部材厚を算定することができる が、地中構造物のように飛来物による衝突荷重が周辺 地盤を介して伝わる場合については、評価式を適用す ることは出来ない。

一方、コンクリートの衝突問題については、衝撃解 析コード(AUTODYNやLS-DYNA)を用いたシミュレーショ ン解析による損傷評価の有効性が確認されていること から1)、地盤材料と飛来物の衝突現象を適切に評価する ことができれば、地中構造物(覆土+構造物)としての損 傷評価が可能になる。本研究では、地盤材料に対する 衝撃解析手法の確立を目的として、著者らが過去に実 施した砂の重錘落下実験²⁾に対する再現解析を実施し た。

2. 砂の重錘落下実験の概要²⁾

衝突解析の再現対象とした砂の重錘落下実験の概要 を表-1に示す。図-1に重錘先端部の概略図、図-2に砂 箱の概略図を示す。重錘の挙動は高速カメラにより計 測し、伝達衝撃力は砂箱の底面に設置した圧力センサ により計測した。

れ 「 天気気 y 女	
重錘(飛翔体)	質量:210.2kg, 先端形状:半球形
砂(衝突体)	鋼製の箱に緩衝材を投入
緩衝材料	乾燥珪砂5号,相対密度50%に調整
再現対象ケース	落下高さ:10m,緩衝材層厚:70cm

キーワード中速度衝突、重錘落下衝撃実験、緩衝材

連絡先 〒135-0062 東京都江東区東雲 1-7-12 東電設計株式会社 E-mail d.yamakawa@tepsco.co.jp

3. 数值解析条件

3.1 解析モデル

再現解析は、衝撃解析コード AUTODYN を用いた。 飛翔体は固体要素でモデル化し、砂については、モデ ル化の違いによる影響について検討するため、固体要 素(以下、Lagrange モデル)および流体要素(以下、Euler モデル)の2ケースとした。解析モデルを図-3に示す。 解析モデルは計算時間の短縮のため軸対称モデルとし、 要素サイズは 5mm とした。なお、Lagrange モデルに おける数値エロージョンひずみの値は2.0とした。

3.2 砂の材料モデル

本検討では、体積弾性係数Kを一定値として扱うモデ ルを採用した。体積弾性係数Kの設定方法は、重錘落下 実験から求めた砂の波動伝播速度Vn = 154.1m/sec から、 一次元波動問題と仮定した式-1 を用いて縦弾性係数E を算出し、式-2よりK = 22.1MPaとした。伝播速度Kpは 重錘が砂に接触してから砂箱底面の伝達衝撃力が立ち 上がるまでの時間Tと層厚hから $V_n = h/T$ の関係より求 めた。

$$W_p = \sqrt{E/\rho}$$
 式-1
 $K = E/3(1-2\nu)$ 式-2

ここに *ρ*:初期密度(t/m³), *ν*:ポアソン比 降伏関数には Drucker-Prager 構成則を用い、三軸圧 縮試験(CD 条件)より得られた内部摩擦角φ=38.7°よ り降伏応カー圧力関係を設定した。

4. 解析結果および実験結果との比較

4.1 重錘貫入量および重錘速度

図-4 に、重錘の貫入量および速度の時刻歴を合わせ て示す。重錘の最終貫入量は、実験での421nmに対し、 Lagrangeモデルでは290nm、Eulerモデルでは397nmと なった。Eulerモデルは重錘速度の時刻歴についても実 験結果と良く一致した。Lagrangeモデルは0~20msec までは実験結果を良く再現しているが、20msec 以降に おける重錘の挙動を再現できていない。これは、重錘 の貫入により、重錘先端付近の砂要素が著しく扁平に なり、解析精度が低下したことが原因と考えられる。

4.2 伝達衝撃力

図-5 に砂箱底面の伝達衝撃力の時刻歴を示す。ここ では、各圧力センサから得られた圧力分布より、砂箱 底面全体にかかる伝達衝撃力として示している。1 波目 についてはLagrange モデルおよび Euler モデル共に同 様の傾向となり、実験結果に対して最大値の値は 95% 程度とわずかに小さいものの、波形が立ち上がるタイ ミングや継続時間は概ね一致した。2 波目については、 両モデルともに最大値は実験結果をほぼ再現できてい るが、立ち上がるタイミングについては、Lagrange モ デルは実験結果よりも早く立ち上がる結果となった。 これについても Lagrange モデルにおいて重錘の貫入量 が大きくなる後半の重錘の挙動を良く再現できていな いことが原因と考えられる。

4.3 応力の伝播状況

図-6 に Euler モデルでの平均主応力コンターを各時 刻で示す。平均主応力が 0.20MPa 以上となる範囲(赤 色)に着目すると、10msec および 20msec での重錘直下 において高圧となる領域が分布しており、応力伝播の 分散角としては概ね 45 度である。また、重錘直下にお いては 2.0MPa 以上の非常に大きな応力が生じており、 詳細なモデル化においては高圧領域における物性設定 が重要になる可能性が示された。

5. まとめ

本研究では、砂を対象とした重錘落下実験に対し、 実験で得られた砂の波動伝播速度を用いて再現解析を 実施し、重錘の挙動および砂箱底面での伝達衝撃力に ついて、実験結果と解析結果の比較を行った。以下に その成果を要約する。

・砂の要素を固体として扱う Lagrange モデルによる再 現解析では、衝突直後の再現性は良いものの、重錘の 貫入量が大きくなる後半での再現性に課題を残した。

-460-

・砂の要素を流体として扱う Euler モデルでは、重錘 の挙動および伝達衝撃力の両方において、実験結果に 対して良く一致する結果を得た。

今後は、より詳細な砂のモデル化について検討する と共に、土質試験等から解析パラメータを推定する手 法についても検討する。

参考文献

1) 例えば、M. Itoh, R. Matsuzawa, and M. Beppu, Numerical Simulations of RC Slabs Subject to Impact Loadings by Using the Improved CAPROUS Constitutive Model, 10th International Conference on Shock & Impact Loads on Structures, Singapore, 2013

 山川大貴,別府万寿博他:砂を対象とした重鍾落下衝突実 験,土木学会,第72回年次学術講演会,I-413,2017

