重錘落下を受ける従来型落石防護柵模型の耐衝撃挙動

室蘭工業大学大学院	学生会員	○服部	桃加
(国研)寒地土木研究所	正会員	今野	久志

1. はじめに

我が国では、落石対策として道路沿いに落石防護柵が 数多く設置されている.一方、落石時の損傷状況を見る と、金網の貫通など設計では想定していない事例も報告 されている.このような背景より、本研究では、ワイヤ ロープ間に落石が衝突する場合の従来型落石防護柵の耐 衝撃挙動に着目し、弾塑性衝撃応答解析を実施した.ま た、得られた解析結果を実験結果と比較することにより、 解析モデルの妥当性を検討した.

2. 実験概要

試験体は、従来型落石防護柵を模擬し、300 mm 間隔で 設置された7本のワイヤロープとひし形金網(素線径 3.2 mm)を間隔保持材およびU字ボルトで結合したものを水 平に設置している.実験は、質量が同程度の2種類の重錘 (コンクリート製および鋼製)をトラッククレーンにより所 定の高さまで吊り上げ、間隔保持材間のスパン中央部に自 由落下させることにより行っている.表1には実験ケー スを示しており、落下位置や高さを変えて全10ケース実 施した.写真1には、実験状況を示している.測定項目 は、1)重錘上面に設置したひずみ型加速度計による加速 度、2)高速度カメラから得られる載荷点変位、および3) ワイヤロープ両端のロードセルによるロープ張力である.

3. 数値解析概要

図1には、本研究で用いた有限要素モデルを示してい る. 鋼製型枠および間隔保持材は4節点シェル要素、ター ンバックルおよび金網は2節点梁要素、それ以外は全て8 節点固体要素を用いた。ターンバックル端部は、実験と 同様にピン支持としている.なお、ワイヤロープの初期 張力、減衰および重力については考慮していない.境界 条件は、鋼製型枠支柱底部を完全固定とした.金網の素 線間には線と線の接触を、金網とワイヤロープあるいは 重錘間には線と面の接触を、それ以外には面と面の接触

実験ケース	重錘の種類	落下高さ	衝突位置
		<i>H</i> (m)	
C-H25/30	コンクリート製	25, 30	中央
C-H5/7.5/10	(質量:100 kg)	5, 7.5, 10	端
S-H10/15/20	鋼製	10, 15, 20	中央
S-H2.5/5	(質量:110 kg)	2.5, 5.0	端

表1 実験ケース一覧

キーワード:落石防護柵,耐衝撃挙動,衝撃応答解析

室蘭工業大学大学院	正会員	小室	雅人
国土交通省北海道開発局	正会員	荒木	恒也

面を定義した.また,解析は重錘に落下高さに相当する 衝突速度を付加させることで実施した.

鋼材の応力-ひずみ関係にはバイリニア型の構成則を採 用し,ワイヤロープに関しては,落石対策便覧を参考に弾 性係数E = 100 GPa,塑性硬化係数E' = 7.4 GPa,降伏応 力 $f_y = 914.7$ MPa と設定した.また,金網と間隔保持材 はE = 200 GPa,E' = 2 GPa とし,降伏応力 f_y はそれぞ れ 245,385 MPa とした.なお,重錘は弾性体と仮定し, 所定の質量となるように単位体積質量を換算している.

4. 数値解析結果および考察

4.1 各種時刻歴応答波形

図2には、代表的な4ケースにおける解析結果と実験結 果を比較している.ここでは、重錘衝撃力、載荷点変位お よびロープ張力について示している.なお、重錘衝撃力 は、実験結果の場合には重錘の加速度に重錘質量を乗じる ことで、解析結果の場合には重錘と金網の接触反力の総和 として算出した.なお、載荷点変位は、重錘衝突位置直下 における重錘底面の鉛直方向変位である.また、ロープ 張力は衝突位置近傍の2本のロープ張力のみ示している.

(a)図に示す重錘衝撃力波形に着目すると、C-H25の場合には解析結果の最大値が実験結果よりも若干過大に評

写真1 実験状況

連絡先:〒050-8585 室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット TEL/FAX 0143-46-5228

価しているものの,全体的には実験結果の波形の立ち上 がり勾配や荷重継続時間も含めて実験結果の波形性状を ほぼ適切に再現していることが分かる.

(b)図に示す載荷点変位波形に着目すると,S-H15の場 合には解析結果の最大値が実験結果よりも若干大きいも のの,全体的には変位の立ち上がりから最大値に至るま での実験結果をほぼ適切に再現している.なお,リバウ ンド以降に両者に差異が見られるが,これは,本解析で は重力を考慮していないことが1つの要因と考えられる.

(c)図に示すロープ張力波形に着目すると、コンクリート重錘の場合(C-H25/7.5)には、解析結果が実験結果を若干大きく評価しているものの、ピーク到達時間や荷重継続時間についてはほぼ一致している。一方、鋼製重錘の場合(S-H15/2.5)には、落下高さの低いH = 2.5 mにおいて解析結果は実験結果を若干小さく評価しているものの、H = 15 m の場合には精度よく再現していることが分かる。

4.2 試験体の変形状況

図3には、最大変位発生時における試験体の変形状況 の一例として、C-H25およびS-H15の場合について、実 験結果と解析結果を比較して示している。図より、C-H25 の場合には重錘は金網によって捕捉されているものの、 S-H15の場合には重錘がロープ間をすり抜けていること

が分かる. これは, 重錘寸法の影響によるものと考えら れる. すなわち, ワイヤロープは 300 mm 間隔で設置され ているのに対し, コンクリート製重錘は外寸が 350 mm, 鋼製重錘は 305 mm であるため,後者の方がすり抜けやす い状況にあるものと推察される. なお, いずれの場合に おいても解析結果は実験結果の金網やロープの変形状況 をほぼ適切に再現していることが分かる.

4.3 各種最大応答値

図4には、全ケースにおける最大応答値について解析結 果と実験結果を比較して示している.図より、解析結果は 実験結果の最大重錘衝撃力および載荷点変位を、20%程 度の誤差内で再現可能であることが分かる.一方、ロー プ張力については、30%程度の誤差が確認されるものの、 解析結果は実験結果よりも大きく示されていることより、 安全側の評価となっている.

- 5. **まとめ**
- (1)本解析モデルを用いることにより、実験結果の重錘 衝撃力、載荷点変位およびロープ張力をほぼ適切に 再現可能である。
- (2) また, 重錘の捕捉やロープ間のすり抜け現象も概ね 再現可能である.