# 支間中央下フランジに腐食劣化の生じた鋼I桁橋における床版の合成効果に関する検討

(株)オリエンタルコンサルタンツ 正会員 ○有村 健太郎大阪市立大学大学院 学生会員 廣澤 直人

大阪市立大学大学院 正会員 山口 隆司 大阪市立大学大学院 学生会員 舟山 耕平

# 1. はじめに

鋼I桁橋の腐食は、主桁の桁端部で多く確認されてい ることは周知の事実であるが、床版からの漏水や、下 フランジ上面の堆積物が原因となる支間部での腐食も 見られる.それらは、桁橋の主たる抵抗機構である曲 げ強度に大きな影響を及ぼすことから、桁端部の腐食 に比べて発生する割合は少ないものの、腐食が生じた 場合、橋全体の耐荷力に与える影響は大きいことが想 定され、決して無視できない損傷のひとつである.

鋼I桁橋は複数の主桁が床版や対傾構,横構を介して 連結されシステムとして挙動すると想定され,複数あ る主桁のうち一部の主桁に腐食が生じても,他の健全 な主桁が腐食した主桁を補うように挙動すると考えら れる.著者らは,これまで,支間中央部に腐食が生じ た場合について,標準的な橋梁形式である鋼I桁橋を対 象に,主桁の腐食が橋梁システムとしての耐荷性能に 及ぼす影響を検討し,床版と鋼桁の合成効果の有無に よって橋梁システムとしての耐荷性能が異なることを 明らかにした<sup>1)</sup>.本研究では,床版と鋼桁の接合機構(ず れ止め)の効果および床版の健全度が橋梁システムと しての鉛直方向の耐荷性能に与える影響について,全 橋 FEM モデル<sup>2)</sup>を用いて解析的に検討した.

## 2. 対象橋梁及び解析モデル

対象橋梁は,単純非合成4主I桁橋(図-1,表-1)で ある<sup>3)</sup>.解析モデルは,床版と上フランジとを完全結合 とした完全合成モデルを基本とし,スラブアンカーを 非線形ばね要素でモデル化した不完全合成モデルおよ び非合成モデルとした.スラブアンカーの非線形ばね 要素は,文献4)を参考に,水平方向(橋軸方向および 橋軸直角方向)のばね剛性を400N/mm,せん断耐力を 272kNとしたバイリニアモデルでモデル化した(図-2). また,ヤング係数により床版劣化の評価を試みた既往 の研究<sup>5)</sup>を参考にヤング係数を10GPaにした場合も解 析を行い,床版の劣化について検討した.なお,腐食 箇所は一般的に腐食が生じやすいとされる外桁 G1 桁

30,600 800 30,000 (a) 側面図 10,700 9,500 600 600 CI 240 G3 G2 Gl G4 3×2,900=8,700 1 000 1 000 (b) 断面図 対象橋梁の一般図 図-1 表-1 設計条件 支間 (m) 30 幅員 (m) 9.5 斜角 (度) 90 床版厚 (mm) 240 舗装厚 (mm) 80 B活荷重 活荷重 設計水平震度 0.25以下 (a) 解析モデル 300 200 100 い 単 力 (KN) 0 -100 -200 •:スラブアンカ 1m 間隔程度で配置 0 変位(mm) (b) スラブアンカ-配置 (c)スラブアンカー履歴特性 図-2 解析モデル 解析ケース 表-2 ばね定数 床版ヤンク 支承 腐食状況 モデル化 Case Y, Z) (kN/mm) 係数(Gpa) 条件 CR-I(-Ec10) 腐食なし 完全 25 (10) 合成 CR-D-G1(-Ec10) 50%減厚 可動 C-I(-NL) 腐食なし 不完全 (K, ∞, K) 25 (非線形ばね要素) 合成 50%減厚 C-D-G1(-NL) 固定 NC-I(-Ec10) 腐食なし 非合成 (1, ∞, 1) 25 (10) NC-D-G1(-Ec10) 50%減厚 材料特性 表-3 ひずみ 降伏点 ヤング係数 部材名 硬化係数 材質  $\sigma_v$  (MPa) E (Gpa) E' (MPa) 主桁フランジ・ウェフ SM490Y 200 355 E/100 ソールプレート SS400 200 弹性体 SS400 235 その他の鋼部材 200 E/100

キーワード:鋼I桁橋,橋梁システム,耐荷性能,腐食,床版 連絡先:〒151-0077 東京都渋谷区本町3-12-1 (株)オリエンタルコンサルタンツ関東支店構造部

TEL 03-6311-7860

弹性体

-101-

RC床板

コンクリート

25

の下フランジとした. 解析ケースを表-2 に,解析で用いた材料特性を表-3 にそれぞれ示す.

# 3. ずれ止めの影響

図-3 および図-4 に完全合成および不完全合成の場合 の荷重-変位関係をそれぞれ示す. 健全時は, 図-3(a) では荷重倍率 α = 2.5 程度まで線形挙動を示すが,図 -4(a)では α=1.0 程度で剛性が低下する. 腐食時は, 図 -3(b)では, α=1.5 付近で剛性が変化していることに対 して, 図-4(b)では, 健全時と同様にα=1.0 程度で剛性 が低下する.図-5には、不完全合成モデルにおけるα =1.5 でのスラブアンカーに作用するせん断力の分布を 示す. 桁端部から支間中央付近までのスラブアンカー がせん断耐力に至っている. なお, α=1.0 において, 桁端部のスラブアンカーがせん断耐力に至ることも確 認している. 図-6 には各ケースの G1 桁に着目した荷重 -変位関係を示す.不完全合成は, α=1.0 付近で剛性 が低下し、その傾きは徐々に非合成の場合に近似して いる.このことから、スラブアンカーのせん断耐力の 喪失に伴って合成挙動から非合成挙動に変化し、床版 と鋼桁の合成効果の低下により橋梁システムとしての 鉛直方向の耐荷性能が低下することがわかる.

## 4. 床版劣化の影響

図-7 に、完全合成および非合成について、α=1.0 に おける支間中央での各主桁の死荷重および活荷重載荷 時のたわみ値を示す.図-7(a)に示す完全合成の場合、 床版劣化の影響によりたわみが大幅に増加しているこ とがわかる.一方、非合成の場合は、いずれのケース においても大きな差は生じない.

## 5. まとめ

本検討の結果から、鋼桁と床版の合成作用や、床版 劣化が、鋼桁の健全時および腐食時のいずれにおいて も橋梁システムとしての耐荷性能に与える影響がある ことを確認した.今後は、鋼桁および床版のそれぞれ の劣化要因と程度が橋梁システムとしての耐荷性能に 与える影響を明らかにしていきたい.

参考文献:1)支間部に腐食劣化の生じた鋼 I 桁橋の耐荷性能評価に関 する一検討,第72回土木学会年次学術講演会講演概要集, pp.1031-1032,2017.9.2)有村健太郎,有山大地,船越博行,山口 隆司:桁端部に腐食劣化の生じた鋼 I 桁橋の耐荷性能評価に関する解 析的検討,土木学会論文集 A1, Vol. 73, No.1, pp. 232-247,2017.4.3) 建設省制定,土木構造物標準設計,全日本建設技術協会,1994.4) 桝田智子,平城弘一,渡辺滉,高田嘉秀,宮地真一,牛島祥貫:スラ ブアンカーの静的ずれ耐荷力特性に関する実験的研究,構造工学論文 集,Vol.47A, pp.1373-1380,2001.35)横山広,石尾真理,玉越隆 史:衝撃荷重による RC 床版の劣化度判定に関する実験的研究,構 造工学論文集,Vol.62A, pp.1194-1201,2016.3.

