実橋梁 RC 床版における光ファイバーセンサによるひび割れモニタリング技術の検討

鹿島建設(株) フェロー会員 ○古市耕輔 正会員 今井道男 岩井 稔 新井崇裕 モニタリングシステム技術研究組合 寺田 晃

1. はじめに

分布型光ファイバーセンサは光ファイバーに沿って連続する ひずみの分布状態を把握できるため、ひび割れなどのようにあ らかじめ発生位置を特定できない現象の検知に適している.筆 者らは、こうした光ファイバーセンサの特長を活かし、鉄筋コ ンクリート床版(以下 RC 床版)の疲労劣化に関するモニタリ ング技術への適用性について検討している.今回、その実用性 を検証するため、実際に供用中の橋梁 RC 床版へ適用した結果 を報告する.

2.損傷程度の評価方法¹⁾

RC 床版試験体を用いた輪荷重走行試験により, 床版の損傷程 度と光ファイバーセンサから算出した評価指標の間に、一定の 相関性があること、特に損傷程度の初期段階での感度が高いこ とを確認できている¹⁾. 光ファイバーセンサから得られたひず み分布から,評価指標を算出するフローを図-1 に示す.得ら れたひずみ分布をもとにデータを内挿し、センサ設置領域近傍 のひずみコンターを得る. そして, 300×10⁻⁶を越えるひずみの 領域をひび割れと判断し、その領域中心部をひび割れとするひ び割れマップを作成する.マップ上のひび割れ長さをすべて累 積し、当該領域に設置した光ファイバー長(後述する今回の構 成においては走行方向:20m,走行直角方向:10m)で除した値 を単位長さ当たりの"ひび割れ延長"とした.本指標はひび割 れ長さの進展を示すもので、ひび割れ幅の変化は考慮されない. 一方,ひずみコンターのうち,300×10⁻⁶を越えるひずみの領域 が全領域に占める割合を"ひび割れ割合"とした.本指標は, ひび割れ長さだけでなく幅の変化についても考慮される.

図-2および図-3に示す輪荷重走行試験結果によれば,こう した評価指標で損傷程度評価(a~e)を判断するためには,"ひ び割れ割合"で約2[%],"ひび割れ延長"で約50[mm/m]の計測 精度が必要と推察される.供用中の橋梁においては,輪荷重走 行試験とは異なり,ランダムな活荷重や温度変動によって計測 誤差が増大することが懸念される.また,一年に満たない試験 期間内に損傷程度が大きく進展することは考えにくい.このよ うな環境下においても,上記の計測精度が確保でき,損傷程度 を判断できるかどうかが実用性を確認するうえで重要である.

キーワード 光ファイバーセンサ,ひずみ測定,ひび割れ,床版 連絡先 〒107-8348 東京都港区赤坂 6-5-11 鹿島建設(株) 土木管理本部 TEL03-5544-0498

-35-

3. 実橋梁での検証実験

対象橋梁は,写真-1に示す上下線分離の鋼桁 RC 床版(橋長 36.30m,幅員 10.75m)で、上り線と下り線の各1パネル分に格 子状の配置(図-4)で光ファイバーを全線接着固定した.上り 線、下り線ともに走行方向に約4m長×5本(計20m),走行直角 方向に約2m×5本(計10m)の直線部を有する.計測器は現地 に設置し、定期的にひずみ分布を計測することとした.

計測開始時(8/19 14 時頃)を初期値として、その差分から発 生ひずみ量を算出、前述の"ひび割れ割合"と"ひび割れ延長" をそれぞれ算出した。その結果を図-5 および図-6 に示す。図 には、計測結果のうち、各計測日における 14 時頃の結果をプロ ットしている。また、光ファイバー設置箇所ごとの、それぞれの 指標の平均値と標準偏差を表-1 および表-2 に示す。特に上り 線走行方向のばらつきが大きくみられるが、昨年度の輪荷重走行 試験時にみられたような損傷程度の進行にともなう"ひび割れ延 長""ひび割れ割合"の上昇傾向は、当該期間内においては認め られない。また、その他の箇所については、前述した損傷程度の 評価に必要な精度を満たすことを確認できた。

4. おわりに

ひずみ分布計測は時間がかかる(今回の場合,数10分程度) ため、計測している間に活荷重によってひずみの状態に変化が生 じている可能性があるが、今回の結果からはこうした影響は顕在 化しなかった.車輛走行が影響を与える時間は、計測時間を考え た際に非常に短く、相対的に影響が小さいためと考えられる.

温度変化による結果の明瞭な変動はみられなかったが,年間を 通じた計測でさらに検証していく必要がある.季節変動によって 既設ひび割れが開閉している場合,温度上昇によればひび割れが 閉じ,評価指標がともに低下傾向になるものと推察される.

引き続き定期的なひずみ分布計測を継続してバックデータを 蓄積するとともに、上り線走行方向のばらつきの原因を究明した い.現状では、評価指標の時間的な傾向を把握したうえで、損傷 程度を評価する必要がある.今後、光ファイバーの配置(格子間 隔や全長)などを考慮し、評価指標の定量的な評価についても取 り組んでいく所存である.

謝辞

本研究は、モニタリングシステム技術研究組合(RAIMS)が 実施した研究であり、内閣府の「SIPインフラ維持管理・更新・ マネジメント技術」の一環として国土交通省が実施する「社会イン フラへのモニタリング技術の活用推進に関する技術研究開発」委託 事業研究の成果である.

参考文献

 今井道男,新井崇裕,岩井稔,古市耕輔:輪荷重走行試験による RC 床版の疲労劣化に関するモニタリング技術の検討(その4)光ファイ バーセンサによるひび割れ検知,土木学会第 71 回年次学術講演会, CS7-039, pp.77-78, 2016.

写真-1 対象橋梁

図-5 ひび割れ割合の変化

表-1 ひび割れ割合			
設置衛所	平均值	標準偏差	
以 直回///	[%]	[%]	
上り線 走行	2.51	1.74	
上り線 走行直角	0.42	1.20	
下り線 走行	0.73	0.26	
下り線 走行直角	0.94	0.56	

図-6 ひび割れ延長の変化

表-2 ひび割れ延長

設置箇所	平均值	標準偏差
	[mm/m]	[mm/m]
上り線 走行	156	63
上り線 走行直角	6	16
下り線 走行	20	7
下り線 走行直角	10	8