重要構造物基礎地盤の地震時安定性評価に関する遠心力模型実験

電力中央研究所 正会員 〇石丸 真,小早川博亮,岡田哲実 電力中央研究所 非会員 関口 陽 セレス 非会員 平賀健史 関西電力 正会員 中村大史

1. はじめに

従来,原子力発電所重要構造物の基礎地盤の地震時安 定性については,周波数領域の二次元等価線形解析に基 づき,すべり安全率評価に代表される応力照査が行われ てきた.しかしながら,瞬間的な力のつり合いを満足で きない場合に直ちに地盤が不安定化するわけではないこ とから,近年,変位量照査を取り入れた新しい評価手法 の体系化が検討されている^{1),2)}.

本研究では、変位量照査の実用化に資する検証データ を得るため、重要構造物の基礎地盤の地震時すべりを対 象とした遠心力模型実験を実施した.また、実験結果を 対象にすべり安全率評価手法の保守性を検証した.

2. 実験条件

図-1に,実験に用いた模型と計測器配置を示す.また, 表-1と図-2には,地盤と弱層の物性値と,地盤の動的変 形特性を示す.地盤模型は人工軟岩(1m³当たりの配合: 早強ポルトランドセメント 82kg,蒸留水 370kg,石灰石 砕砂 817kg,石灰石微粉末 817kg,混和剤 1kg,養生7日) で作製し,弱層は厚さ0.2mmのテフロンシートを地盤模 型打設時に地盤内に設置することで模擬した.遠心加速 度は 50G であり,建屋模型は幅 60mm,高さ40mm (実 物換算で幅 3m,高さ2m)である.

入力加速度は、周波数 60Hz と 80Hz (実物換算では 1.2Hz と 1.6Hz)の正弦波 20 波(前後に各 4 波のテーパ ー)を、加振ステップ毎に加速度振幅を大きくして入力 した.**表-2**に、土槽底面で計測された各加振ステップの 最大加速度を示す.なお、入力は水平動のみであるが、

表-1 地盤と弱層の物性値(*o_m*: 拘束圧)

	地盤	弱層	
単位体積重量	20. 3kN/m ³	20. 6kN/m ³	
ピーク強度	c_p =267. 1kN/m ² ϕ_p =34. 7°	$c_p=0.0 \text{kN/m}^2 \ \phi_p=28.6^\circ$	
残留強度	a=4.61, b=0.70 $a \cdot \sigma_m^{\ b}$	$c_r=0.0 \text{kN/m}^2$ $\phi_r=19.3^\circ$	
引張り強度	41. 4kN/m²	0.0kN/m²	
初期せん断弾性係数	933000kN/m²	2800kN/m ²	
ポアソン比	0. 42	0. 49	

図-2 地盤の動的変形特性(凡例は試験時の拘束圧)

図-1 模型形状と計測器配置図

キーワード 基礎地盤,遠心力模型実験,すべり安全率,残留変位量

連絡先 〒270-1194 千葉県我孫子市我孫子 1646 電力中央研究所 地球工学研究所 地震工学領域

実験では鉛直動も計測された.表より,実験装置の特性で 80Hz 加振の方が 60Hz 加振よりも鉛直動が大きいことがわかる.

3. 実験結果

図-3に、各加振ステップにおける建屋傾斜量(建屋天端両端の鉛直変位の差分絶対値を計測幅 W で除して算出)の残留値(累積)を示す.また、図-4 と図-5 には、 建屋および地盤の水平変位量と、パイ型変位計(弱層を 跨ぐ位置と比較のために直近の地表面に設置)による相 対変位量の各加振ステップの残留値(累積)を示す.こ れらの図より、残留変位量は加振ステップ 80Hz-d03 以降 に急増することが確認できる.

図-6には、80Hz-d04加振時に高速度カメラで撮影した 画像から算出したひずみ分布を示す.これより、80Hz-d04 加振時は弱層下端と建屋左側端部をつなぐクラックの発 生が確認できる.80Hz-d03加振の段階ではまだあまり明 瞭ではないが、このクラックの発生により、弱層上部の 土塊が動き、残留変位量が急増したと考えられる.

4. 等価線形解析に基づくすべり安全率評価

実験を対象にすべり安全率評価を実施した.最小すべ り安全率を表-2に合わせて示し,最小すべり安全率のす べり線形状を図-7に示す.表より,最小すべり安全率は 80Hz-d02以降で1を下回っており,実験で残留変位が急 増する 80Hz-d03 より早いことから,保守的な評価となっ ていることが確認できる. なお,実験時に発生したすべ り線のすべり安全率は最小値ではないが,残留変位が急 増する前に1を下回る傾向は同様である.

5. まとめ

本研究において実施した重要構造物の基礎地盤を対象 とした遠心力模型実験では、すべり安全率評価手法の保 守性が認められた.また、すべり安全率が1を下回って もすべりによる変位量は限定的であり、基礎地盤が急激 に不安定な状態にはならないことが実証された.今後は、 時刻歴非線形解析による変位量照査について検討を行う 予定である.

謝辞

本論文は,平成28年度原子カリスク研究センター共通 研究(北海道電力,東北電力,東京電力ホールディング ス,中部電力,北陸電力,関西電力,中国電力,四国電 力,九州電力,日本原子力発電,電源開発,日本原燃) によって得られた成果である.

参考文献

- 1) 原子力安全基盤機構:基礎地盤及び斜面の安定性に 係る設計・リスク評価手引き,2014.
- 日本電気協会:原子力発電所耐震設計技術指針 JEAG 4601-2015, 2016.

表-2 入力加速度の最大値と最小すべり安全率

加振 ステップ	水平動 m/s ²	鉛直動 m/s ²	最小すべり 安全率		実験すべり線 の安全率	
60Hz-d00	0. 57	0. 13	No. 6	24. 78	No. 6	24. 78
60Hz-d01	3. 47	0. 42	No. 6	8. 38		8.38
60Hz-d02	5.72	1. 15	No. 5	5. 10		5.61
60Hz-d03	7.77	0. 91	No. 4	3. 02		3.33
60Hz-d04	9.16	1. 22	No. 1	2. 12		2.67
60Hz-d05	10. 40	1.50	No. 6	1.40		1.40
80Hz-d01	8.68	1.87	No. 6	1.76		1.76
80Hz-d02	10. 04	2. 88	No. 3	0.86		0.98
80Hz-d03	11.53	3.84	No. 2	0. 39		0. 72
80Hz-d04	11. 25	3. 39	No. 2	0. 20		0.45

図-7 最小すべり安全率のすべり線形状