導電率による中層混合処理工法の品質管理システム

(株) 大林組 正会員 〇望月 勝紀 正会員 森田 晃司 正会員 牧野 貴哉

(株) 加藤建設 正会員 伊藤 浩邦

1. はじめに

中層混合処理工法の施工管理では、固化材の量と羽根切り回数が所 定値以上であることを確認する. また, 品質管理では, 改良体の強度と均 質性が基準を満たすことを確認する 1). 特に重要な管理項目は均質性で あり, 改良体が不均質であった場合, 部分的に強度不足が生じ, 品質を 確保できない恐れがある.しかし、改良体の均質性は、施工後に採取し た複数の供試体で強度試験を実施し、各供試体の強度を比較することで しか確認できない、そのため、安全側の施工管理として、羽根切り回数を 多くすることで品質を担保せざるを得なかった. さらに、 撹拌作業は地中 で行われるため、オペレーターは地表の混合状態を目視確認し、操作レ バーに伝わる感覚や撹拌翼の回転抵抗を頼りに施工する必要があった. オペレーターの熟練度が品質の善し悪しに影響するので、オペレーター の腕に頼らない定量的な品質管理の確立が課題となっていた. 本稿では、 新たな品質管理システムの確立に向けた各種検討結果を報告する.

2. 品質管理システムの概要

本システムは改良中の地盤の導電率を計測することで、改良体の均質 性を定量的に評価する. 導電率とは、電気の通りやすさを示す物性値で、 値が大きいほど電気が通りやすい. また, 導電率は粘土鉱物や水の量に 影響を受けるため、土質によって値が異なる. さらに、地盤に添加される 固化材(Ca²⁺)の量と導電率には相関があることを室内実験で確認してい る(図-1). 本システムでは、トレンチャーに取付けた複数のセンサーで改 良中の地盤の導電率を計測する. 各導電率のバラツキが所定の範囲に 収まっていれば、原土と固化材が均質に撹拌されたと判断する(図-2). オペレーターは、車載モニターで導電率のバラツキを確認しながらトレン チャーを移動させることで、過不足のない撹拌作業が可能となる. そのた め,必要以上に羽根切り回数を多くすることがなくなり、日施工量の増大 も期待できる. さらに、計測結果は GPS で取得した位置情報とともに PC に保存されるため、改良体全体が均質に撹拌されたことを確認できる。

3. 現場実験

(1)目的

本システムの適用性を検証し、品質管理方法の検討に必要なデータを 取得するため、現場実験を実施した.

(2)方法

トレンチャーの支柱の側面に 5 台のセンサーを等間隔で取付け、施工 中の導電率を計測した(図-3). 施工は図-4のように原土と固化材を撹拌

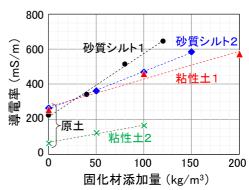


図-1 固化材添加量と導電率の関係

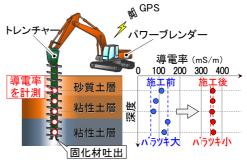


図-2 システムのイメージ

図-3 センサー取り付け状況

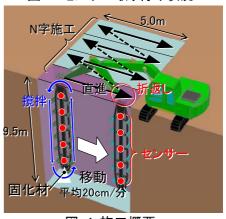


図-4 施工概要

キーワード 地盤改良工,中層混合処理工法,導電率

連絡先 〒108-8502 東京都港区港南 2-15-2 (株) 大林組生産技術本部技術第二部 TEL03-5769-1302 しながら、トレンチャーの直進と折り返しを繰り返すこと(N 字施工)で改良体を造成した。また、改良体の強度のバラツキを確認するため、施工後に GL-1、-3、-5、-7、-9m の改良土を採取し、一軸圧縮試験を実施した。なお、今回の実験では、表-1に示す施工条件で従来の施工管理のもとで施工した。

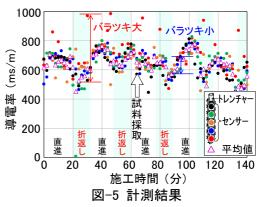
(3)結果

計測結果を図-5 に示す. 各色の点(●)は 2 分ごとに計測された各深 度の導電率, 白抜きの点(△)はそれらの平均値を表す. 時間の経過とと もに、導電率の平均値が上下し、バラツキの幅も大小に変動している、特 に, 折返し部(図-5 中のハッチング部)の付近で, その傾向が大きい. 折 返し部では、導電率の低い未改良土が初めて撹拌されるため、導電率が 低下するが、固化材が添加されるにつれて上昇に転じる. その際、バラツ キが一時的に大きくなると考えられる. 一方, 直進部では, 改良済みの箇 所とラップさせるようにトレンチャーを移動させるため、大部分が2回撹拌 されることになり、バラツキも小さくなると考えられる. 次に、 撹拌直後に各 深度で採取した改良土の一軸圧縮試験結果, および施工時に各深度で 計測された導電率を図-6に示す. 材齢28日の一軸圧縮強度は全ての深 度で設計基準強度を上回っており、品質管理基準を満たしている.また、 一軸圧縮強度のバラツキを変動係数で表すと、0.09 となっており、従来の 品質管理で求められている強度の変動係数の目標値 0.231)を大きく下回 る. そのため, 原土と固化材は均質に撹拌されたと言える. 一方, 導電率 の変動係数は0.09と小さい.これらより,導電率で改良体の均質性を定量 的に評価できることが示された.

4. 品質管理手法の検討

現場実験の結果より、導電率の変動係数が 0.1 程度になるまで撹拌されると、改良体は十分均質になることが分かった。そこで、施工中の導電率から変動係数を算出し、改良体の均質性を評価する手法を検討した。 図-5のデータを変動係数に変換したグラフを図-7に示す。変動係数の関値を 0.1 とし、閾値を下回れば改良体にバラツキがなくなり、均質になったと判断する. 折返し付近に関しては、折返し完了時点での変動係数で判断するものとする. 本システムでは、車載モニターに導電率のバラツキ判定結果を表示することで、施工中にオペレーターが容易に改良体の均質性を確認できるようにした(図-8).

5. まとめと今後


導電率を計測することで、改良体の品質を「見える化」できることが示された.一方で、現場実験での強度の最低値は、設計基準強度より十分に大きく、導電率の変動係数が 0.1 より大きくても、管理基準を満たす可能性がある.今後、羽根切り回数を低減した(導電率の変動係数が大きい)場合の強度のバラツキを確認し、導電率の閾値を高めに設定できれば、施工効率をさらに向上できる.また、様々な施工条件・土質条件の現場でデータを取得・蓄積し、本システムの有用性を検証していく予定である.

参考文献

1) パワーブレンダー工法協会: パワーブレンダー工法技術資料

表-1 施工条件

改良対象土の分類	砂質シルト
改良深度	9.5 m
設計基準強度	220 kN/m²
セメント添加量	110 kg/m³
水セメント比	230 %
羽根切り回数	50 回/m²以上

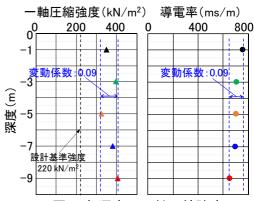


図-6 各深度の一軸圧縮強度 および導電率

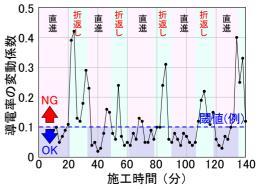


図-7 導電率のバラツキ管理図

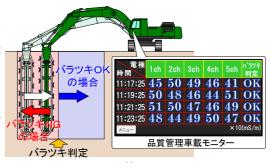


図-8 品質管理システム