# GNSS 測位を用いたクレーン作業の安全管理

三井住友建設 (株) 正会員 ○千葉 史隆 三井住友建設 (株) 正会員 三上 博

# 1. はじめに

建設工事のクレーン作業において、鉄道や道路などの 供用中の路線、高圧送電線が工事区域に隣接している場合は、安全を確保するために作業範囲を制限する.このような条件下でのクレーンの安全管理として、従来は安全監視員の配置や安全標識を設置し、人の眼でブームの位置を監視することで、制限範囲への侵入を防ぐ対策が取られていたが、ヒューマンエラーを原因とする監視ミスによる事故の発生など課題があった.

こうした管理に対して、GNSS を用いた RTK 測位技術は、移動体をセンチメートルレベルの誤差で測定できるため、ブームにアンテナを設置することで正確なブーム位置を把握することができる。特に GNSS 測位は 3 次元で位置が求まるため、従来では把握することが困難であった、高さ方向の監視も容易に行うことができる。

本報告ではクレーンの安全管理を目的に構築した、 GNSS 測位技術を用いたクレーンブーム位置の監視システムについて報告を行う.

### 2. システムの概要

### (1) システム構成1)

本システムはクレーンブームの先端に GNSS アンテナを設置し、あらかじめ設定した制限範囲にアンテナが接近、侵入すると警報を発するシステムである。システムの構成を図-1に示す。

RTK 測位は、ブーム計測に用いる受信機(移動局)と、 既知点上に固定した受信機(基準局)を2箇所同時に観 測する.移動局は基準局で観測したデータを取り込むこ とで、センチメートルオーダーの誤差で位置が求まる. リアルタイムで移動局の位置を精度良く求める場合は、 基準局と移動局の間を無線通信リンクで構成する必要が ある.ブームのリアルタイムの位置情報は、クレーンの 運転席に設置したパソコンに取り込む.パソコンではブーム位置と制限範囲との位置関係を計算し、制限範囲へ 接近、もしくは侵入した場合は、クレーン運転席に設置 した警報装置が作動する.クレーンオペレータは警報装

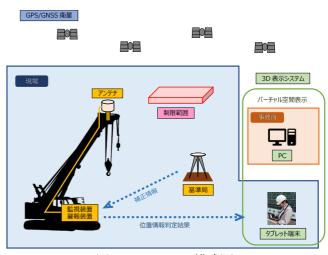



図-1 システム構成図

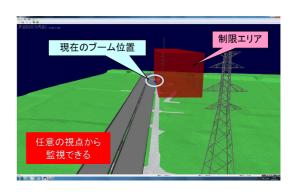


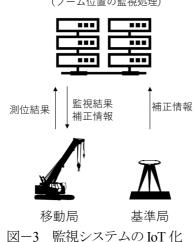

図-2 バーチャル空間表示

置の鳴動により、ブームの旋回操作を即座に停止することで、制限範囲へのブームの侵入を防ぐ、ブームの位置情報と監視結果は、現場内に構築した無線 LAN で共有することで、3 次元のバーチャル空間で、自由な視点位置でブーム位置を確認することができる(図-2).

### (2) クレーンへの機器設置

本システムはブームへの配線の有無により、有線方式と無線方式の2種類の方法を使い分けている.

有線方式はブーム長が固定された、クローラークレーンやタワークレーンに用いている。ブームに沿ってアンテナ同軸ケーブルを運転席まで配線し、運転席に設置した GNSS 受信機に接続する。本方式は機器電源がすべて運転席内で供給されるため、充電などのメンテナンスが


キーワード 施工管理 RTK 測位 情報化施工 IoT

連絡先 〒104-0051 東京都中央区佃 2-1-6 三井住友建設株式会社 技術本部建設情報技術部 TEL 03-4582-3121



写真-1 鉄道営業線近接工事での適用事例

サーバー (ブーム位置の監視処理)



不要となる一方, ブームの伸縮への対応が難しい.

無線方式は、トラッククレーンなどのブームが伸縮するクレーンで用いる. ブームの先端に、GNSS アンテナ、受信機、無線 LAN およびバッテリーを設置し、測位結果を無線 LAN で運転席に設置した監視用のパソコンに送信する. 本方式は設置が容易であるため、機器類をフックに取付けて吊荷の位置を監視するなど、ブーム先端以外の監視も可能となる. 一方で、日々バッテリーの交換を必要とすることから、メンテナンス性は有線方式と比べ劣る.

GNSS 機材類は有線および無線ともに、専用の治具を 用いてブーム先端に設置する. 設置治具はブームの傾斜 角に応じて、自由に回転する機構を有しており、アンテナが常に天頂を向く仕組みとなっている.

## 3. 現場への適用事例

当システムは現在運用中の現場を含め、これまで11現場での適用事例がある.

鉄道営業線近接工事に適用した事例においては、監視 対象区間がカーブ区間であり、カーブ線形に基づいて精 細にモデル化した3次元の制限範囲を設定した.工事の 進捗に応じてクレーンが移動した場合でも、工事区域全体に渡って制限範囲を設定しているため、再設定が不要である。工事の最盛期においては、最大5台のクレーン監視を同時に行った(写真-1).

クレーン作業の安全面できわめて慎重を要する工事で あったが、本システムの活用により、作業範囲の有効活 用と安全管理を効率的に実施でき、当該近接工事を無事 に完了した.

### 4. 監視システムの IoT 化

従来の監視システムは、クレーン毎に設置した監視用パソコンでブーム位置判定を行っていたため、パソコンの起動忘れによる未監視や、システムエラー時は現地に赴き診断するなど、運用管理上課題があった。そこで、個々のクレーンブームの位置情報を、インターネットを介してサーバーに集積し、一拠点でブーム位置判定を行うシステムを構築した(図-3)。

ブームの位置情報は、クレーンに新たに設置した携帯 回線モジュールを有するルーターを介して、サーバーに アップロードする。サーバー側では、受取ったブーム位 置を判定し、判定結果を同一経路でクレーンに設置した 警報装置に送信する。本手法により、クレーンに設置す るすべての機器が、クレーンのエンジンと連動して作動 することが可能になったため、クレーン作業中は常に監 視することが可能になった。さらに、サーバー上でブー ム位置監視処理を行っていることから、インターネット 接続環境下では場所を問わず、監視結果の確認や、シス テム動作状況のモニタリングが可能となった。

監視システムの IoT 化は他にも、RTK 測位の補正情報 用の通信にも適用することができる. 現場内の通信リン クの構築が不要になるため、基準局とクレーンとの距離 が離れていても、携帯電話のエリア内であれば、場所を 問わず基準局を設置することが可能となった.

#### 5. おわりに

GNSS を利用したクレーンブームの位置監視システムについて報告を行った. IoT 化することで汎用性が向上し、多現場、多台数の導入が容易になると想定される. 今後もクレーン作業の安全性を高めるために、本システムの導入を進めて行く.

#### 参考文献

1) 三上博, 千葉史隆, 伊達峰司: 3D クレーンブーム位 置監視システムの実用化, 建設機械施工, 783 号, pp19-23, 2015,5