自動現場密度試験ロボット開発のための改良散乱型 RI 試験器評価

㈱竹中土木 技術・生産本部 正会員 ○千葉 力 正会員 大村 啓介 ソイルアンドロックエンジニアリング㈱ 非会員 池永 太一 非会員 塩見 篤志

1. はじめに

十工事において重要な品質管理項目の一つとして 盛土の締固め管理がある. 現在, 現場密度試験の方 法としては砂置換法と RI 法とがあり、RI 法は砂置 換法と比較して計測時間が短く、複数点計測(面的 管理)が可能である.しかし、より短時間で計測が 可能な RI 法においても、日々の計測に掛かる時間、 労力は小さくない. そこでロボットに RI 試験器を搭 載し、盛土の締固め管理を自動で行うシステムを開 発することとした. 自動現場密度試験ロボット開発 にはロボット課題と計測器課題があり, ロボット課 題は指定した場所へ自律移動し、計測器を移動、接 地させること、計測器課題はロボット搭載に向けた 計測器の小型軽量化, 計測面の不陸, 接地状況を定 量的に判定、考慮した計測方法の確立とがある. こ れまでに、ロボットに搭載する試験器には削孔が不 要な散乱型RI試験器を選定し、ロボットに搭載する ための小型化改良を行っている.

本報では小型化改良を行った散乱型 RI 試験器と 既往の透過型 RI 試験器による計測精度確認(3.1)お よび、接地(3.2),不陸(3.3)状況等の諸条件が計測結 果に及ぼす影響調査の結果について報告する.

写真.1 自動 RI 試験ロボット

2. 使用試験器概要

· 改良散乱型 RI 試験器

改良散乱型 RI 試験器は散乱型 RI 密度計と散乱型 RI 水分計の2つからなる. その諸元を表-1に記す.

表-1

世 散乱型RI水分計 散乱型RI密度計 測定方法 熱中性子散乱型 _____ ンンチレーション方式 He-3比例計数管 検出器 寸法 $198 \times 255.5 \times 174$ $370 \times 126 \times 70$

· 透過型 RI 試験器

比較に用いた表面透過型 RI 試験器(ANDES)の諸 元を表-2 に記す.

表-2

	透過型RI密度水分計	
	密度計測部	水分計測部
測定方法	γ 線透過型	速中性子線透過型
線源	Co-60	Cf-252
検出器	GM計数管	He-3比例計数管
寸法	$340 \times 260 \times 145$	

写真.2 改良散乱型 RI 密度計 (左:密度計, 右:水分計)

写真. 3 透過型 RI 密度計 (ANDES)

3. 試験内容

3.1 精度確認試験

2 種類の RI 測定器(散乱型 RI 密度計・水分計, 透過型 RI 密度水分計) で同一測定箇所を転圧回数ご とに繰り返し測定を行った. (試験数量:2機種×10 点×転圧回数(2,4,6,10回転圧の4サイクル)) 3.2 クリアランス試験

不陸の少ない平らな測定面を選び、測定面と測定 器底面の離間距離(クリアランス)を 1mm 単位で 1cm に達するまで測定した. (試験数量:2機種×10 点)

3.3 不陸の影響試験

精度確認試験の10点に加えて、クリアランス試験 を行った不陸の少ない平らな測定面と, 凹凸の目立 つ測定面を加えた 12 点を測定した. (試験数量:2 機種×1点, 測域センサ測定×12点)

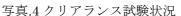


写真.5 不陸の影響試験状況

4. 試験結果

4.1 精度確認試験

試験結果を図-1.2 に示す. 転圧回数 2~4 回に差が みられるが、転圧回数が増した6~10回ではその差 は小さくなっている. これは試験器の特性として散乱 型 RI 密度計が透過型 RI 密度計よりも表層付近の状 態を大きく評価することが原因と考えられる. 転圧作 業では転圧回数の増加とともに、表層から深部へと順 に締め固めが進行するため, 転圧初期において表層付 近は締め固まり、深部は弛んでいる状態となるためこ のような結果が生じたと考えられる.

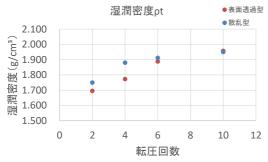


図-1 精度確認試験結果(密度)

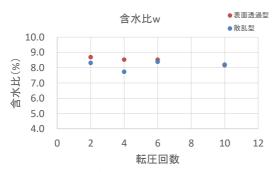


図-2 精度確認試験結果(水分量)

4.2 クリアランス試験

クリアランス試験の結果を図-3.4 に示す. 両機種と もクリアランス距離と計測値が反比例関係にあるこ とが分かる. また, 散乱型密度計は測定範囲の表層を 大きく評価する特性により、クリアランスの影響を大 きく受けるが、散乱型水分計はクリアランスの影響を あまり受けないことがわかった.

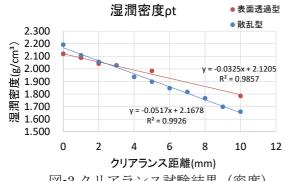


図-3 クリアランス試験結果(密度)

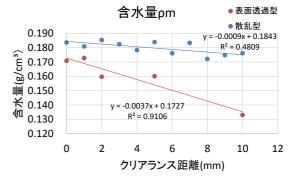


図-4 クリアランス試験結果(水分量)

4.3 不陸の影響試験

試験結果を図-5.6.7 に示す.不陸の大きさは,測定 面から測域センサ(2次元レーザー距離計)までの鉛 直距離の標準偏差で評価した.極端に不陸が大きな点 を除けば、湿潤密度 ρ t、含水量 ρ m ともに密度差 0.000(g/cm3)を中心に分布する結果となっており、不 陸の大きさと測定結果の間に規則的な傾向は確認で きなかった.

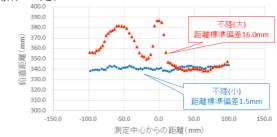


図-5 不陸計測結果 湿潤密度差Δot 含水量差Δρm 0.300 0.030 0.200 0.020 湿潤密度差∆(g/cm³) 0.100 0.010 0.000 0.000 -0.100 -0.010 -0.200 -0.020 10.0 15.0 5.0 10.0 15.0 20.0 鉛直距離標準偏差(mm) 鉛直距離標準偏差(mm) 図-6 不陸影響調査結果 図-7 不陸影響調査結果 (水分量)

5. おわりに

改良散乱型 RI 試験器の精度確認試験より、転圧作 業初期は計測結果に差が生じるが, 転圧が進み盛土の 締固めが均一になると同等の結果が得られることが 分かった. また、クリアランス試験より、いずれの試 験器でもクリアランス距離に比例して計測値が小さ くなることが分かった. 不陸の影響試験結果には規則 的な傾向は確認できなかった. 今後は様々な土質で試 験を行うとともに、計測器と計測面の接地状況(クリ アランス,不陸)の定量的な判定方法の検討、ロボッ ト搭載による測定結果への影響調査を行っていく.