営業車両による通り変位測定データに基づく 軌道力学状態の推定

新潟大学大学院自然科学研究科 新潟大学工学部 東日本旅客鉄道(株) 新潟大学工学部 学生員 千葉 颯兵 正会員 阿部 和久 正会員 小松 佳弘 正会員 紅露 一寛

1. はじめに

鉄道軌道のロングレール化は、乗り心地の改善や、周辺環 境への振動・騒音の低減、保守作業の省略化などに有効とな るなど、多くの利点を有する. しかし、ロングレールは長い 区間に亘ってまくらぎで拘束されることで、著大な温度軸力 が作用するため、座屈や破断の危険性を内在しており、座屈 の防止策として、バラスト道床による軌道の変形抑制などの 手段が講じられている。そのため、軌道の横方向変位に対す る道床の抵抗力である道床横抵抗力は、軸力とともに維持管 理上重要な指標となっている. 現在, 軸力はレール温度とひ ずみゲージ等で測られた伸縮量から間接的に求められてい る。また、道床横抵抗力はまくらぎに荷重を加えて、その移 動量を測定することで評価している。そのいずれの方法も 現場での測定となるため、軌道全区間において測定するとな ると膨大な時間と労力が必要となり、現実的でない、一方で、 軌道の通り変位は、軌道上を車両が走行する際の加速度等か ら比較的良好な精度で求めることが可能になっている¹⁾.

軸力に起因してレール変位が発生するため、軌道変位が 詳細にわかれば、これに基づいてレール軸力が推定可能にな ると思われる。そこで本研究では、営業列車に搭載された加 速度計などによって日常的に測定される通り変位データか ら、レール軸力を常時モニタリングする手法ついて、基礎的 検討を行う。具体的には、左右レールから構成される軌道系 を対象として、締結部の変位を考慮したレール軸力を推定す る理論を構築し、数値実験によりその妥当性を検討する。ま た、道床横抵抗力の推定の可能性についても言及する。

2. 左右レールの通り変位測定データ

左右それぞれのレールの 10m 弦正矢の測定例を図.1,図.2 に示す. なお,データは直線区間において測定されたものである. 図より測定値の波形は左右レールで異なることがわかる. 次に,図.1 における夕方 (16 時 45 分)の測定値 (赤線)と朝 (6 時 25 分)の測定値 (青線)との差分を図.3 に緑線として示す. 同様に図.2 における場合のものを図.3 に橙線として合わせて示した.図.3より,測定値は左右のレールで異なるが,その差分は両者で似通った波形になることが確認できる.以上のことから,左右のレールはそれぞれ異なる初期

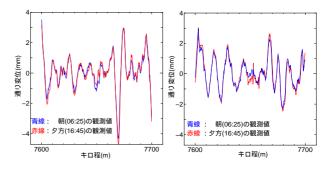


図.1 左側レール通り変位 図.2 右側レール通り変位

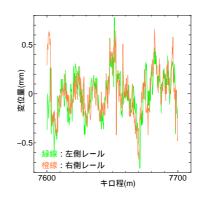


図.3 左右レールの弾性たわみ成分の比較

通り変位を有し、そこから弾性たわみが成長するため、測定値は左右において異なるが、図、3のように差分をとり、両者を比較すると、弾性たわみ成分の波形が類似することが分かる。 つまり敷設後の左右レールはまくらぎを介して概ね一体となって振る舞い、その変位量がまくらぎ変位として現れることになる。

3. 締結部の変位を考慮したレール軸力推定

前述のように、レールは締結装置を介してまくらぎに接合されているので、レール変位とまくらぎ変位とには差異が生じる。よって、レールたわみとまくらぎ変位は一致しない。また、左右レールは異なる初期通り変位を有するので、軸力作用下の弾性たわみも完全には一致しない。そのため、締結部からレールに作用する力も左右レールで異なる。したがって、左右いずれか一方の作用力がわかっても、道床横抵抗力を与えず、それらの合力を評価する必要がある。

締結部に作用する力は、レールとまくらぎとの相対変位に より与えられる。すると、レールのつり合い式は次式で与え

Key Words: ロングレール, 軸力, 常時モニタリング

連絡先: 950-2181 新潟市西区五十嵐二の町 8050 番地 TEL 025 (262) 7028 FAX 025 (262) 6775

られる.

$$EIw_R'''' + N(w_R'' + w_{R0}'') + k_r(w_R - w_s) = 0,$$

$$EIw_L'''' + N(w_L'' + w_{L0}'') + k_r(w_L - w_s) = 0$$
(1)

ここで, E はレールのヤング率, I はレール弱軸回りの断面 二次モーメント, N は軸力 (圧縮を正), w_R, w_L は左右レー ルの弾性たわみ, w_{R0}, w_{L0} は初期通り変位, w_s はまくらぎ 変位, k_r は締結部の横剛性である。また, () は軌道長手方 向座標 x に関する微分である.

式 (1) には、まくらぎ変位 w_s が含まれている。 まくらぎ のつり合い式は次式で与えられる.

$$k_s w_s = k_r (w_R + w_L - 2w_s) (2)$$

ここで, k_s は道床横剛性である.

式 (2) を w_s について解くと次式を得る.

$$w_s = \frac{k_r}{2k_r + k_s} (w_R + w_L)$$
 (3)

式(3)を式(1)に代入して w_s を消去すると、次式を得る. $EIw_{R}^{\prime\prime\prime\prime} + N(w_{R}^{\prime\prime} + w_{R0}^{\prime\prime}) + k_{r}w_{R}$

$$-\frac{k_r^2}{2k_r + k_s}(w_R + w_L) = 0,$$

$$EIw_L'''' + N(w_L'' + w_{L0}'') + k_r w_L$$

$$-\frac{k_r^2}{2k_r + k_s}(w_R + w_L) = 0$$
(4)

式(4)両式の和をとると次式を得る.

$$EIw_{RL}^{""} + N(w_{RL}^{"} + w_{RL0}^{"}) + \tilde{k}_T w_{RL} = 0,$$

$$w_{RL} := w_R + w_L, \quad w_{RL0} := w_{R0} + w_{L0},$$

$$\tilde{k}_T := k_r - \frac{2k_r^2}{2k_r + k_s}$$
(5)

一方、軸力が $N + \Delta N$ であるときのつり合い式は、たわみ 増分 Δw を用い次式で与えられる.

$$EI(w_{RL}'''' + \Delta w_{RL}''') + (N + \Delta N)(w_{RL}'' + \Delta w_{RL}'' + w_{RL0}'' + \tilde{k}_T(w_{RL} + \Delta w_{RL}) = 0$$
(6)

式(6)から式(5)第1式を引くと次式を得る.

$$EI\Delta w_{RL}^{""} + (N + \Delta N)\Delta w_{RL}^{"} + \Delta N(w_{RL}^{"} + w_{RL0}^{"}) + \tilde{k}_T \Delta w_{RL} = 0$$
(7)

さらに式(7)のxに関するFourier変換より次式が成り立つ.

$$k^{2} \frac{\hat{w}_{RL} + \hat{w}_{RL0}}{\Delta \hat{w}_{RL}} = \frac{1}{\Delta N} \{ EIk^{4} - (N + \Delta N)k^{2} + \tilde{k}_{T} \}$$
 (8)

ここで k は波数, $\hat{()}$ はレール長手方向に関する Fourier 変換 を意味する.

測定データから式(8)左辺を求めることができる。これを 次式のように波数 k の 4 次関数で与える.

$$k^{2} \frac{\hat{w}_{RL} + \hat{w}_{RL0}}{\Delta \hat{w}_{RI}} := f(k) = ak^{4} - bk^{2} + c \tag{9}$$

式 (9) 右辺の未知係数 a,b,c を最小二乗法により決定し、関 数 f の最小値を与える波数 k_m を求めると、次式を得る.

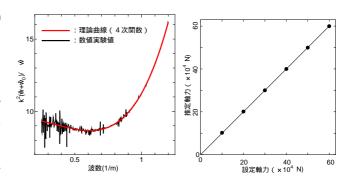


図.4 数值実験結果

図.5 軸力推定精度

$$k_m = \sqrt{\frac{N + \Delta N}{2EI}} = \sqrt{\frac{b}{2a}} \tag{10}$$

式 (10) の第 2, 3 式より得られる次式から絶対軸力 $N+\Delta N$ を求めることができる。

$$N + \Delta N = EI \frac{b}{a} \tag{11}$$

また、道床横抵抗力 q_s は次式で求めることができる。 $EIw_{RL}^{""} + N(w_{RL}^{"} + w_{RL0}^{"}) = q_s$

(4) 式 (8) による軸力推定では、全通り変位 $(w_{RL} + w_{RL0})$ とそ の増分が分かれば良い.一方,式(12)による道床横抵抗力を 推定する際には、弾性たわみを求める必要があるため、全通 り変位から初期通り変位を分離する必要がある. これにつ いては今後の課題である.

4. 数値モデルによる検証

50kgN レールを想定し, 軌道長は約800m とした. また, 左 右レールから構成される軌道系を考えた場合の道床横剛性 $ilde{k}_T$ は 6.23 × 10^4 N/ m^2 と設定した.

軌道は弾性連続支持された Euler ばりでモデル化する こ れをはり要素で離散化し、初期通り変位とレール軸力を設定 して変位解析を実施した. そのたわみ解の Fourier 変換より、 $k^2(\hat{w}+\hat{w}_0)/\Delta\hat{w}$ を求めた一例を図.4 に示す. 数値実験結果 には、長波長成分に乱れが認められるが、これは有限長で軌 (7) 道をモデル化したためと考えられる.

式(11)より軸力を推定した結果を図.5 に示す. 図の横軸 が設定値、縦軸が推定値である、図より、前述の理論によっ て極めて高い精度で軸力推定が可能であることがわかる。

あわりに

本研究では、通り変位データを用いたレール軸力推定手法 を構築し、その理論的妥当性を確認した、今後は、初期通り 変位の推定法、測定ノイズの影響などについて検討するつも りである.

葛西亮平, 矢作秀之, 小西俊之, 線路設備モニタリング装置の自動測定ロジック改善, 鉄道工学シンポジウム論文集第20号, No.7, pp.45-48, 2016.7