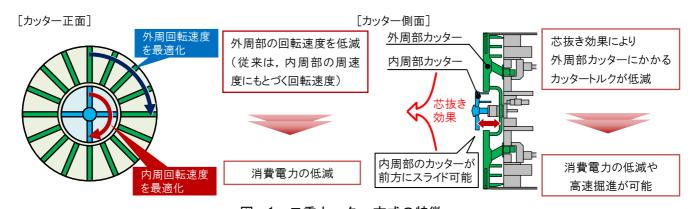
消費電力を低減する二重カッター方式を採用したシールド機の模擬実験(1)


(株)大林組 正会員 〇山下 健司 フェロー 守屋 洋一 正会員 日野 義嗣 福田 智之

1. はじめに

シールド機の動力源は電力であり、シールド機を動かすためには、膨大な電力が必要となる. その電力量の うち、土砂を掘削するカッターが消費する電力量は70%も占めている.そこで、シールド工法の省電力化を図 るため, カッター駆動方式を従来の単一駆動方式に替えて, 二重カッター方式を採用した省エネシールドを開 発した. 本稿では, 二重カッター方式の効率的なカッター回転速度の組み合わせを検証するために, 模擬実験 機を用いて実施した切削試験のうち実験計画について報告する.

2. 二重カッター方式の概要

「二重カッター方式」は、シールド機の前面に位置するカッターヘッドを内周部と外周部に分割し、それぞ れを独立して駆動させることで、内周部カッターと外周部カッターの回転速度の最適化を図るものである. こ れにより、カッター駆動に要する消費電力の低減、地山掘削時の内周部カッタービットの負荷低減による掘進 速度の向上およびカッター中心部への土砂固着によるトラブルの抑制等が可能となる(図-1).

図-1 二重カッター方式の特徴 3. 実証実験概要

(1)目的

本実験では、内周部カッターと外周部カッターの回転速度の組み 合わせを変化させて, 硬質粘性土を想定した模擬地盤を切削し, 切 削による電力消費量を確認することで,最も効率的なカッター回転 速度の組み合わせを把握する.

(2) 実験機

図-2に実験装置概要を、図-3に実験装置(カッター部)を示 す. 実験機は、掘削外径 16m の大断面シールド機を想定し、その 1/8 スケール (外周部カッター径: φ2,000 mm, 内周部カッター径: φ500 mm) とした. 想定掘進速度を 48mm/分とした場合の切込み量 (シールド機が掘進し、カッターヘッドが1回転する間に、1個の カッタービットが地山に切り込む深さ)と同等の切込み量となるよ うに実験機のカッター回転速度の仕様を決定した. 掘進速度 48mm/ <u>内周部カッタ</u> 分の場合、外周部カッターの最外周の切込み量は、4.4~8.8mm、内 周部カッターの最外周の切込み量は,4.6~7.1mm となる(**表-1**).

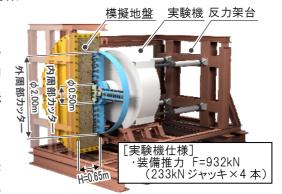


図-2 実験装置概要

図-3 実験装置(カッター部)

キーワード 省エネシールド,二重カッター方式,大断面シールド,芯抜き効果

連絡先 〒108-8502 東京都港区港南 2-15-2 品川インターシティ B 棟 ㈱大林組 TEL: 03-5769-1318 実験機では、掘進速度を12mm/分とし、この切込み量を再現するように表-2に示すシールド機仕様とした.

	径 (m)	周長 (m)	回転速度(rpm)	パス数	切込み量 (mm)		
外周部カッター	16.0 (外周側)	50. 27	0. 68~1. 36	8	4. 4~8. 8		
	4.5 (内周側)	14. 14	0.00~1.30	4	8. 8 ~ 17. 6		
内周部カッター	4.0 (外周側)	12. 57	1. 70~2. 60	4	4.6~7.1		
	1.4 (内周側)	4. 40	1. 70~2. 00	2	9. 2~14. 1		

表-1 想定シールド機仕様

表-2 実験機仕様

	径 (m)	周長 (m)	回転速度(rpm)	パス数	切込み量 (mm)
外周部カッター	2.00 (外周側)	6. 28	0. 25~1. 50	4	4. 4~8. 8
	0.57 (内周側)	1. 79	0. 25~1. 50	2	8. 8 ~ 17. 6
内周部カッター	0.50(外周側)	1. 57	1,00~1,60	2	4.6~7.1
	0.17 (内周側)	0. 53	1.00~1.00	1	9. 2~14. 1

(3)模擬地盤

模擬地盤は、硬質粘性土(強度 2.0N/mm²)を想定し、**図−4** に示す鋼枠(φ2.66m. H=0.65m)に打設するために、適度な流動性と高い材料不分離性を持つ材料として、空洞充填材を選定した。模擬地盤配合を表−3 に、模擬地盤性状を表−4 に示す。鋼枠に作液した空洞充填材を打設し、強度発現後、実験装置に設置する。強度確認は、原位置で直接計測できる針貫入試験にて行うこととした。

(4) 実験ケース

実験は、掘進速度12mm/分にて算出した切込み量の中から、外周部カッター、内周部カッターに対して、それぞれ3種類(最大値、中間値、最小値)を選定し、それらを組み合わせたケースについて行った。表-5に実験ケースを示す。外周部カッターおよび内周部カッターのカッタートルク、推力などの機械負荷を計測し、それにもとづく電力量を算出し、最適なカッター回転速度の組み合わせを決定することとした。

図-4 模擬地盤(硬質粘性土)

表-3 模擬地盤配合(1m³当たり)

材料	単位量(kg/m³)
水	825
セメント系結合材	330
特殊増粘剤	175
不分離性混和剤	0. 5

表-4 模擬地盤性状

項目	性状
一軸圧縮強度	1. 8N/mm ² ~2. 2N/mm ²
フロー値	130±25mm
比重	12~14kN/m³

表-5 実験機のカッター切込み量と回転速度の組み合わせ (掘進速度 12mm/分)

実験ケース		1	2	3	4	5	6	7	8	9
切込み量 (mm)	外周部カッター	8. 6	8. 6	8. 6	6. 5	6. 5	6. 5	4. 3	4. 3	4. 3
	内周部カッター	7. 0	5. 9	4. 7	7. 0	5. 9	4. 7	7. 0	5. 9	4. 7
回転速度 (rpm)	外周部カッター	0. 35	0. 35	0. 35	0. 46	0. 46	0. 46	0. 70	0. 70	0. 70
	内周部カッター	0.86	1. 02	1. 28	0. 86	1. 02	1. 28	0. 86	1. 02	1. 28

4. おわりに

硬質粘性土を想定した二重カッター方式での切削試験結果に関しては、「消費電力を低減する二重カッター方式を採用したシールド機の模擬実験(2)」で報告する。今後は、砂質土を想定した実験を行い、土質による効果の違いや単一駆動方式での切削実験を行い、芯抜き効果の確認も行っていく。さらに、チャンバーを再現した実験装置を用い、土砂の攪伴効果を含めた二重カッター方式の有用性を検証する予定である。