仮設-本設兼用合成地下壁の床版接合部の性能確認実験その1

JFEスチール(株)	正会員	○恩田 邦彦,	正会員	河野	謙治
(株)大林組	正会員	古荘伸一郎,	正会員	武田	篤史
ジェコス (株)	正会員	西口 正仁,		藤本	正貴

1. はじめに

筆者らは、仮設土留め壁として使用されるハット形鋼矢板を 地中に残置し、後打ちの本体 RC 壁と一体化して本設利用する

「仮設-本設兼用合成地下壁」(図-1)を開発した^{1),2)}.本構造の主な特徴は、ハット形鋼矢板のウェブ中央に予めT形鋼を取り付けた組合せ鋼矢板を用いている点であり、これにより仮設時には壁体の剛性が上昇するとともに、本設の合成壁構築後では後打ち RC 壁とのシアコネクタ機能を果たすことから、薄壁化(狭隘地対応)、急速施工化を実現している.

今回は,道路・鉄道分野でU型擁壁や掘割構造等に適用する 鋼矢板 場合,必須となる合成壁-RC 床版の接合構造の性能確認実験 を実施した(試験体 C1~C3,全3ケース).本編(その1)で ①T形鋼 75ジ音 は,実験方法および C1 の結果について述べる.また続編(そ の2)³⁾において, C2 および C3 の実験結果を述べる.

2. 合成壁とRC床版の接合構造

合成壁-床版接合部の基本構造を図-2 に示す. 接合部に作用 する曲げモーメントに対しては,主筋(鉄筋スタッド)を組合 せ鋼矢板の①T形鋼フランジ中央,②鋼矢板ウェブの端部,③ 鋼矢板のアーム部に現場溶接して,接合面から床版の内部に伸 ばし,機械式鉄筋継手(モルタル充填式)により,RC床版の主 筋と連結して応力伝達する構造を基本とした.

3.実験方法および実験条件

実験方法を図-3 に示す.実大サイズの接合部試験体を山 型にして設置し,RC 床版端部のジャッキにより押し,引き の正負交番載荷を行った(載荷した際,最大曲げモーメン トが接合部に作用するように本方式を採用).本方式では曲 げモーメント,せん断力の他,軸力が同時に作用すること となる.載荷ルールについては,実材料強度(**表**-1)を用 いて計算した降伏荷重に到達した際の変位量δ。を基準変位 とし,基準変位の整数倍ごとの変位を3回ずつ繰り返し付 与することを基本とした.試験体は,合成壁での先行曲げ 破壊を想定した C1 および,RC 床版での先行曲げ破壊を想 定した C2, C3 の全3 体である.C1 試験体の断面を図-4 に 示す.RC 床版の耐力が合成壁の耐力を上回るよう,RC 床

図-2 合成壁-RC 床版接合部の基本構造

表-1 実験に用いた各材料強度

部位	降伏点 (MPa)	引張強度 (MPa)	伸び (%)	
鋼矢板	324	478	42	
T形鋼	285	436	33	
D16(SD345)	361	555	22	
D22(SD345)	369	560	22	
鉄筋スタッドD16	379	517	22	
鉄筋スタッドD22	359	505	25	
コンクリート(床版)	C1の圧縮強度 28.3(MPa)			
コンクリート(合成壁)	C1の圧縮強度 28.5(MPa)			

キーワード 地下壁,合成構造,ハット形鋼矢板,接合,床版,鉄筋スタッド 〒210-0855 神奈川県川崎市川崎区南渡田町1-1 JFEスチール(株) TEL044-322-6592, FAX043-322-6519 ハット形鋼矢

板10H

合成壁

T形錙

版の厚さを700mmとし,鉄筋量も増やすため、 組合せ鋼矢板のフランジ部にも, 主筋を配置し た、鋼矢板フランジへはスタッド溶接は難しい ため、主筋を鋼矢板に直接、溶接して応力伝達 できるようにした. なお、今回の実験における 組合せ鋼矢板は、ハット形鋼矢板 10H とT形鋼 (106×204×12×18mm) で構成した.

クレビス / 復動ジャッキ クレビス クレビス 載荷P 変位量 δ 反力台 -mahmmi 図-3 実験方法(合成壁-RC 床版接合部)

540

接合面

RC床版

反力台

コンクリート

が剥落

写真-3 試験体 C1 の最終状況

4. 実験結果(試験体 C1)

図-5にC1の載荷重と試験体変位量(+:閉じ側, -: 開き側) の関係を示す.同図中には、合成構造の想定のもと平面保持を仮定 して計算した予測解析結果と合成壁の許容荷重 Pa および最大耐力 Pu^{cal}の計算値を示す.事前の想定どおり,閉じ側(+)では合成壁 の鋼矢板引張最外縁において、開き側(一)では合成壁 RC 部の鉄 筋 (接合部近傍) において, 最初に降伏に達した (降伏荷重 Py^{exp}). その後,閉じ側では+2δ。(=40.2mm)の載荷ステップにおいて, 🖻 開き側では-3δ。(=-25.5mm)において、それぞれ最大耐力計算値 Pu^{cal}を上回る最大荷重 Pu^{exp}を計測した.最大荷重到達後は,接合 部のコンクリート圧壊(写真-1)および,ひび割れ(写真-2)が進 行し、徐々に荷重が低下した.なお、載荷ステップ40。以降は、閉 じ側(+)と開き側(-)の変位量の差が大きかったため、閉じ側

(+)の変位量は+4δ。(=80.4mm)に固定 し, 開き側 (-) のみを-4 δ_0 , -5 δ_0 , -6 δ_0 , ・と大きくして載荷を継続した.最終的 には, 接合部のコンクリートが剥落し, 鋼 重P(kN) 矢板が大きく塑性変形した(写真-3).

5. まとめ

仮設-本設兼用合成地下壁の床版接合部 の試験体 C1 は、想定通り、合成壁で先行降 伏するとともに,最大荷重は最大耐力計算値 を上回っており,十分な構造性能を有してい ることが確認できた.

写真-1 接合部のコンクリート圧壊 参考文献

1) 岡由剛ほか: 仮設-本設兼用合成地下壁の開発その1 (押し抜き試験による一体性評価), 第 69 回土木学会年講Ⅲ-336, 2014.8 2) 岩崎伸一ほか: 仮設-本設兼用合成地下壁の開発その2(合成壁の梁曲げ試験), 第69回土木学会年講Ⅲ-337, 2014.8

-504-

写真-2 接合部のひび割れ

接合部

ひび割れ

3) 黄再弘ほか: 仮設-本設兼用合成地下壁の床版接合部の性能確認実験その2, 第72回土木学会年講, 2017.9(投稿中)

変位δ(mm) 図-5 荷重と試験体変位量の関係(C1 試験体)

鋼矢板が

塑性変形

(閉じ側)

1800

搄