潤滑性付与型セルロースエーテル添加コンクリートに関する基礎的研究

信越化学工業(株) 高知工科大学 高知工科大学 正会員 フェロー会員

非会員

○小西 秀和・山川 勉大内 雅博

Anuwat Attachaiyawuth

1. はじめに

セルロースエーテル系の水溶性高分子(以下,CE)はその保水性を活かし、古くから左官用モルタル、タイル張付け材などのセメントモルタルに使用されている。コンクリート用途では、ブリーディング低減、材料分離抵抗性付与などを目的として、水中不分離性コンクリート。高流動コンクリートなどの特殊コンクリートに使用されている。普通コンクリートに関しては、CE 添加により、ブリーディングは低減できるが、可塑性(スランプ)が著しく低下してしまうという技術的課題があり、あまり実用化されていない。本検討では、CE を添加しても可塑性の低下を起こさず、ブリーディング低減効果を付与できる普通コンクリート用の CE の検討を行い、摩擦低減効果の観点からメカニズム解析を行った。

2. 実験概要

2.1. 使用材料

表 1 に実験に使用した原材料,表 2 に CE の物性を示す。

表 1 原材料

材料	記号	種類・物性・主成分		
セメント	С	普通ポルトランドセメント,		
ピメント		密度:3.16 g/cm³		
	S1	最大粒径 5 mm, 陸砂		
細骨材		吸水率:2.89%, 表乾密度;2.57 g/cm³		
州田村初	S2	最大粒径 5 mm, 砕砂		
		吸水率:0.81%,表乾密度:2.67 g/cm³		
粗骨材	G	最大粒径 25 mm, 砂利		
祖月初		吸水率:1.52%, 表乾密度;2.60g/cm3		
水	W	上水道水		
	WR	AE 減水剤:リグニンスルホン酸系		
	SP	高性能 AE 減水剤:ポリカルボン酸系		
混和剤	AE	AE 剤:陰イオン界面活性剤系		
	DF	消泡剤:ポリアルキレングリコール誘導体系		
	CE	セルロースエーテル		

表 2 CEの物性

CE の種類	重量平均分子量 × 10 ⁴ (g/mol)	化学構造	
CE-7	7	2.18 3a 2 0 2.0.2	
CE-15	15	ヒドロキシプロピル メチルセルロース	
CE-30	30		

2.2. 因子と水準

本検討の因子と水準を,表3に示す。

表 3 因子と水準

因 子	水 準		
CE 添加量	$0 \sim 1.0 \text{ kg/m}^{-3}$		
CE 重量平均分子量	$7 \sim 30 \times 10^{4} \text{ g/mol}$		

2.3. 実験配合

本検討の配合を,表4及び5に示す。

表 4 コンクリート配合

ſ	W/C	s/a	WR/C	単位量 (kg/m³))	
	(%)	(%)	(%)	W	С	S1	G
ľ	48.9	41.6	0.25	157	321	745	1056

表 5 モルタル配合

W/C	s/m	S/C	SP/C	単位	乙量 (kg	$\sqrt{m^3}$
(%)	(%)	(%)	(%)	W	С	S2
45	50	2.06	$0.6 \sim 0.8$	293	652	1341

s/m;細骨材モルタル比

3. 実験方法

3.1. コンクリート混練

容量 60 リットルの強制二軸練りミキサーを使用し、セメント、細骨材、粗骨材、CE を入れ、 空練りを 30 秒間行った。その後、水、WR、必要に応じて AE 又は DF を加え、90 秒間混練し、コンクリートを得た。尚、練り混ぜ量は 40 リットルとした。設定空気量は $4.5\pm1.5\%$ とし、コンクリートの練り上がり温度は、 20 ± 3 となるように材料温度を調整した。試験項目 と試験方法を表 6 に示す。

3.2. モルタル混練

5 リットルのモルタルミキサーを用いて、空練り (C+S2)を 30 秒,W+SP+(DF)を加え、60 秒間練り混ぜを行った。空気量は 4.5%以下となるよう DF を使用し、モルタルの練り上がり温度は、 20 ± 3 ^{\odot}となるように材料温度を調整した。また、SP はフローが 260 ± 10 mm となるように使用量を調整した。試験項目と試験方法を表 6 に示す。

表 6 試験項目と方法

X · DAN A C D A				
配合	試験項目	試験方法		
	スランプ	ЛS A 1101		
コンクリート	空気量	JIS A 1128		
	ブリーディング	ЛS A 1123		
	フロー (0 打)	JIS R 5201		
モルタル	空気量	JIS A 1128		
モルタル	V漏斗	モルタル漏斗試験器 (図 1)		

キーワード セルロースエーテル, 潤滑性, 普通コンクリート, スランプ, ブリーディング, 可塑性 連絡先 〒942-8601 新潟県上越市頸城区西福島 28 番地 1 信越化学工業(株)合成技術研究所 TEL 025-545-5805

4. 実験結果と考察

4.1. コンクリート試験結果

図 2 に CE 添加量とスランプの関係を, 図 3 に CE 添加量とブリーディング量との関係を示す。CE 添加 量 300g/m³ までの領域では、CE 無添加の場合と比較 してスランプが低下している。これは、CE が溶解す るために練り混ぜ水の一部を吸水し, 見掛け上の単位 水量減少が影響していると考えられる。CE を増量さ せることで潤滑性が付与され、単位水量減の効果を打 ち消し、スランプが次第に回復している。CE 添加量 には最適値があり、1,000 g/m³以上の添加では材料粘 性が高まり過ぎるため、スランプは低下すると推定さ れる。また、ブリーディング低減メカニズムとしては、 直鎖状の CE 分子の親水性官能基が、水分子を捕捉す ることによるものと考えられる。このため、CE添加 量及び分子量(直鎖状分子の長さ)が大きくなると、 多くの水分子が捕捉され、ブリーディング量が低下す ると考えられる。¹⁾

4.2. モルタル試験結果

モルタルの潤滑性評価には、「自己充填コンクリート中の粗骨材・モルタル粒子間相互作用の簡易評価方法」 2) に従い、評価を行った。この試験では、モルタルの漏斗流下速度比(R_m)と模擬粗骨材として直径 $10\ mm$ のガラスビーズを混入したモルタルの漏斗流下速度比(R_{mb})の比により、コンクリート変形時のモルタル相の変形性の低下度合($1-R_{mb}/R_m$)を定量化した。尚、 R_m 及び R_{mb} は、漏斗試験での流下時間から、下式 (1) により算出した。

 R_{m} , $R_{mb} = 10/漏斗流下時間 (sec) (1)$

 R_m に対する R_{mb} の比が高い、つまり 1- R_{mb} / R_m の値が小さい方が、潤滑性に優れると評価できる。漏斗試験による結果を図 4 に示す。CE-15 よりもやや高分子量の CE-30 の方が潤滑性付与に効果がある結果であり、 $100~g/m^3$ の添加で潤滑性が最大となった。モルタル配合では単位水量が多く、CE が溶解するのに十分な水が系内に存在し、また、単位セメント量も多いため、コンクリート試験で確認された潤滑性(スランプ)低下の現象は起こらなかったと考えられる。

5. 結論

- 1) CE の使用量が 300 g/m³以下の場合, スランプの低下が起こるが, 添加量を増やすことで材料に潤滑性を付与することができ, スランプは CE 無添加と比較して同等若しくはそれ以上となった。
- 2) ブリーディング低減効果は CE 添加量及び分子量に 依存する結果となった。
- 3) 模擬粗骨材を用いたモルタル漏斗試験から、潤滑性付与効果には、CE の最適添加量があることが明らかとなった。

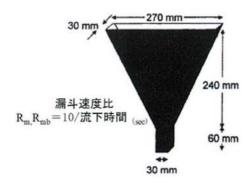


図1 モルタル漏斗試験器

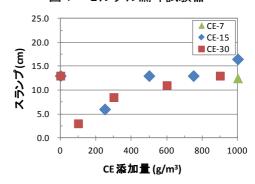


図 2 CE 添加量とスランプの関係

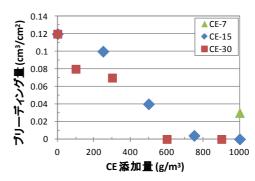


図3 CE 添加量とブリーディング量の関係

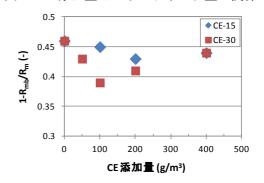


図 4 CE 添加量と 1-Rmb/Rmの関係

6. 参考文献

- 1) 小西秀和ほか:低分子量セルロースエーテルの普通コンクリートへの適用に関する基礎的研究,日本建築学会大会学術講演梗概集(九州),2016年8月,pp.255-256
- 2) 大内雅博ほか:自己充填コンクリート中の粗骨 材・モルタル粒子間相互作用の簡易評価方法,コンクリート工学年次論文報告集, Vol.21, No.2, pp.451-456, 1999