版構造の FEM 解析における簡易モデルの検討

| 岐阜大学大学院            | 学生会員 | ○黒田 | 宗之 |
|--------------------|------|-----|----|
| ジェイアール東海コンサルタンツ(株) | 正会員  | 奥西  | 淳一 |
| 岐阜大学               | 正会員  | 内田  | 裕市 |

### 1. はじめに

数値解析を用いて載荷位置が変化する鉄筋コンクリ ート版(以下, RC版)の終局状態を検討しようとした 場合, RC 版をどのようにモデル化するかは計算作業の 効率に影響を及ぼす。すなわち、3次元のソリッド要素 でモデル化した場合には載荷条件、破壊モードを特に 考慮することなく適用できるという利点はあるが、計 算時間が長くなるという欠点がある。一方,シェル要素 や梁要素(格子桁)を用いれば計算時間は短くなるが、 載荷条件,破壊モードによっては不合理な結果を与え る可能性がある。そこで、ここでは RC 版の FEM 解析 において解析モデルの違いがどのような影響があるか を確認することとした。

# 2. 解析モデルの選定

# 2.1 検証実験の概要

各解析モデルの精度を確認するため、境界条件が明 確な RC 版の載荷実験を行い解析結果との比較を行っ た。図-1 に示すように、試験体寸法を 1200×1200 ×100mm とした RC 版を 3 点支持し, 載荷位置を 2 通り に変えて載荷試験を行った。図中の丸印は載荷点,バツ 印は支点を示す。支点および載荷点にはそれぞれロー ドセルを配置し、荷重およびすべての支点反力を計測 した。

試験体には D10 鉄筋が格子状に配筋されており、主 筋は有効高さを 75mm, 配力筋は 65mm とし, 縦横とも 100mm 間隔で配筋している。載荷点とその左右の支点 の位置関係を固定し,残りの支点との距離を変えた試 験体1と2を比較検討した。





#### 2.2 解析の概要

解析には、汎用非線形解析コード DIANA を用いた。 ソリッド要素を用いた solid モデル、シェル要素を用い た shell モデル,および鉄筋と同じ間隔で格子状に梁要 素を配した beam モデルについて解析を行った。beam モデルでは、断面高さと鉄筋量を一定として梁の幅を パラメータとして解析を行った。それぞれのモデルの 要素分割を図-2に示す。

解析に用いる材料特性は材料試験の結果に基づいて 決定した,解析に用いた材料特性値を表-1に示す。た だし、コンクリートの引張軟化モデルについては solid モデルにおいてパラメータ解析を行い、試験体1の実 験結果と比較することで同定した。shell および beam モ デルの解析では, solid モデルで同定された材料データ を用いた。その後,同一の材料データを使用し,試験体 2の解析を行った。

表-1 材料試験結果

| (N/mr   |      |        | (N/mm², |
|---------|------|--------|---------|
|         |      | 試験体1   | 試験体2    |
| コンクリート  | ヤング率 | 28000  | 30000   |
|         | 圧縮強度 | 42.8   | 48.1    |
|         | 引張強度 | 1.68   |         |
| AH 45   | ヤング率 | 200000 |         |
| <u></u> | 降伏応力 | 400    |         |

キーワード FEM 解析 版構造 ソリッド要素 シェル要素 梁要素

連絡先 〒501-1193 岐阜市柳度1番1 岐阜大学大学院工学研究科 社会基盤工学専攻 TEL 058-293-2424



2.3 解析結果

実験と解析で得られた載荷位置の荷重・たわみ関係 を図-3 に示す。凡例の beam の後の数字は、断面の幅 を高さの 0.6 倍, 0.7 倍にしたという意味である。はり 要素が交差することで剛性が高くなることを考慮して, 0.1 倍刻みで幅を変化させた中で、実験結果に近い値が 得られた 0.6 と 0.7 の結果を示した。

試験体1では, solid モデルはコンクリートの圧壊の タイミングは一致したが,それ以降も荷重が増加した。 shell モデルは実験の最大荷重点までは実験結果とほぼ 一致したが,さらに荷重が上昇し,たわみが 20mm に 達して圧壊した。beam モデルは 0.6, 0.7 共に最大荷重 時のたわみは実験値よりも小さいが,荷重・たわみ曲線 の概形は実験結果とほぼ一致した。なお,断面幅の大き い 0.7 の方が荷重が高くなった。

試験体2では, solid モデルは実験結果よりも荷重が 低くなった。shell モデルの荷重・たわみ曲線の概形ほぼ 一致したが, 圧壊は見られず荷重が増加し続ける結果 となった。beam モデルは試験体1と同様に,最大荷重 時のたわみが小さくなった。beam モデルは,断面の幅 を高さの0.7倍程度とすることで,おおよそ最大荷重は 再現できることがわかった。

# 3. 版構造解析

#### 3.1 解析の概要

図-4 に示すように, 1000×2000×200mm の寸法で一辺 を固定端とした RC 版を対象とする。図の丸印は載荷



ムーの強制変化 100mm 時のひりみ図 点を表し、6パターンの解析を行った。また、有効高さ を 150mm として、D13 鉄筋を 100mm 間隔で格子状に 配筋した。

### 3.2 解析結果

各載荷位置での荷重一たわみ関係を図-5 に示す。 solid と shell モデルは、いずれも概形は似ているが、 shell モデルの方が荷重が高くなった。図-6 に変位 10mm 時の載荷位置①での solid モデルの最大主ひずみ と beam モデルの引張ひずみを示す。solid モデルでは 斜めに破壊線が現われており、載荷位置②・④・⑤でも 同様に、斜め破壊する結果となった。また、shell モデ ルも solid モデルと同様の破壊形態となった。しかし beam モデルでは、荷重・たわみ曲線は他モデルと類似 して似ているが、破壊は載荷点に近い固定端から生じ ており、破壊モードは再現できていない。

#### 4. まとめ

版の配筋に対して斜め方向に生じる破壊は配筋方向 に梁要素を格子状に配置したモデルでは再現できない。 版が曲げ破壊する場合には shell モデルが効率的である が, せん断破壊は再現できないので, その場合には solid モデルとする必要がある。