多数点測定の位相変化情報に基づいた内部欠陥探査方法の検討

(株)東洋計測リサーチ 正会員 〇山下健太郎(株)大進コンサルタント 正会員 炭谷 浩一

1. はじめに

著者らは、構造物表面に入力信号としてのトーンバースト弾性波を発生させ、観測される表面波に内部欠陥 からの反射波が干渉することによって生じる位相(差)の変化を元に、内部欠陥の有無を検知する手法につい て検討してきた¹⁾. この方法では、内部欠陥の有無の判定は可能であるが、その位置を決定することは困難で あった. そこで、構造物表面の複数点において波動を測定し、

内部欠陥の位置を決定する方法について,まず理論的な検討 を行い,その実用化を目指すこととした.

2. 数値計算方法,内部欠陥が一つの場合

図1のように、打撃点から一定距離離れた位置に測定点を 複数個配置し、構造物の振動応答を測定する方法を考える. 入力信号は、制御された周波数を持つトーンバースト信号で ある.連続性を持つ周期信号を入力すると、構造物の表面を 伝搬する表面波及び,内部欠陥があった場合にそこで反射さ れる波動は、いずれも同一周波数を持つ波動となる. 内部欠 陥などによる反射波の干渉がない場合は,主として表面波の みが観測され、その位相は、時間に正比例することとなる. すなわち,位相の時間微分は一定値となる.これに対して, 同一周波数の反射波が干渉すると、その時刻において位相の 変化が生じ,その後再び,位相の時間微分は一定値に収束す ると考えられる.この現象を理論的に確認するため、構造物 表面に周波数 10kHz,継続時間 1ms のトーンバースト信号 を入力し、入力点直下 50mm に波動を全反射する境界があ るとした場合の数値計算を行った.測定点は、入力点から 25mm 間隔で 175mm までの 7 点である. 図 2 は、計算し た測定波形をヒルベルト変換して求めた位相関数の時間差 分である. 図には,入力点から25mmの測定点での位相差 (位相の時間差分)波形を示している.(a)は内部欠陥が無い 場合,(b)は欠陥がある場合である.(b)では,0.225msに 下に凸となるローカルピーク(図中〇印)が見られるが, 欠陥がない場合の(a)と比較して、このピークは、内部欠陥 からの反射波の重畳によるものと考えることができる. す なわち、表面波以外の波動が到来した時刻を位相差関数に 出現するローカルピークの時刻によって検出できる可能性 が示された.

キーワード 弾性波,非破壊試験,内部欠陥探査,位相,ヒルベルト変換 連絡先 〒300-2635 茨城県つくば市東光台1-6-6 (株)東洋計測リサーチ TEL029-848-0065 図3は、測定点と位相差関数のローカルピーク出現時刻の関係を示しているが、距離と共に遅れ時間は長く なるものの、距離125mmを境にして、両者の勾配が異なる.このことは、測定距離125mmまでは、まず表 面波が到達し、その後内部欠陥で反射した縦弾性波が到来し、位相差の変化を生起させるが、150mm以降の 測定点では、先に反射した縦弾性波が到来し、遅れて表面波が到達したことによると考えられる.この事象を

考慮して,縦弾性波の到達時刻を決定し,これを 元に,内部欠陥位置の推定を行うことを試みた. 欠陥位置は,信号入力点と測定点を焦点とし,縦 弾性波の伝搬距離を焦点からの距離の和とする 楕円を描き,その楕円が少なくとも5本以上交差 する点を求め,これを内部欠陥位置とした.図4 は,その推定結果を示すものである.仮定した内 部欠陥位置と,推定結果はほぼ一致している.

3. 内部欠陥が複数ある場合

内部欠陥が複数個ある場合,反射波が重畳した 波動に対し,更に反射波が重畳することになる. 図5は,前節で述べた内部欠陥に加えて,入力点 から右側100mm,深さ150mmに2つめの内部欠陥が ある場合の位相差分である.0.23msに見られる下 に凸なピークは浅い位置にある内部欠陥からの反 射波によるもの,0.285msの上に凸なピークは,深 い位置にある内部欠陥からの反射波によるもので ある.内部欠陥が深い位置にあるため,反射波が 小さく結果的に位相差の変化も小さい.

図6は、図5に示す位相差分波形からローカル ピークの時刻のみを取り出し、前節と同様の方法 によって内部欠陥位置を推定した結果である.図 に示すとおり、2個の内部欠陥が検出されているが、100 実際の計算で設定した内部欠陥の位置と比隠する と、推定範囲が拡がっている.これは、内部欠陥 が測定点群の中央直下にあり、入力点と各測定点 を焦点とする楕円が広い範囲で重なることによる ものと考えられる.

4. まとめ

トーンバースト信号を利用して、内部欠陥からの反射波の到達時刻を位相差関数に出現するローカルピーク から推定し、内部欠陥の位置を推定する方法について、理論的な検討を行った.理想的な波形が観測されるこ とを条件に、複数個の内部欠陥があっても、それぞれの概略の位置を推定できることが分かった.ただし、図 6にも示されるように、ノイズや誤差を含まない波形であっても、推定誤差を伴う結果となり、現実的な測定 技術としては、ノイズを含む測定波形の信号処理方法、位相差関数のローカルピークの実際的な検出方法など、 多くの課題が残されている.なお、実構造物を対象とした実験結果については、今後発表していく予定である.

参考文献

1) 山下健太郎他:弾性波の位相変化日着目した内部欠陥からの反射波の検出,(公社) 土木学会 第71回年次学術講演会 V-457