鋼製容器で被覆した鋼繊維補強ポリマー含浸コンクリート製保管容器の落下試験

太平洋セメント(株) 正会員 ○森 寛晃、正会員 本間 健一、非会員 市村 高央、非会員 石田 泰之 (株)太平洋コンサルタント 非会員 小森 久幸、正会員 渋谷 和俊、非会員 布施 卓 東京パワーテクノロジー(株) 非会員 今泉 憲

マテラス青梅工業(株) 正会員 岡本 賢治

1. はじめに

東日本大震災において発生した、放射性物質に汚染さ れた廃棄物(以下、放射性廃棄物)の運搬・保管を目的 として、様々な仕様の保管容器が開発されている。しか し、今後福島第一原子力発電所の廃炉に伴って発生が予 想される放射性廃棄物は、その形態や保管方法が現時点 で未定であり、既存の保管容器では適用が困難な場合が 想定される。このため、今後発生する多様な放射性廃棄 物を、様々な環境下においても安定的に貯蔵・保管する ための新たな仕様の保管容器の開発が望まれている。

著者らは、福島第一原子力発電所で発生する放射性廃 棄物への適用を目的として、鋼繊維補強ポリマー含浸コ ンクリート (SFPIC) に、鋼製容器を被覆した保管容器を 新たに開発し、現在各種性能評価を進めている。保管容 器の要求性能としては、遮蔽性や耐久性、安全性などが 挙げられるが、新たに開発した保管容器は、図1に示す ように、普通コンクリートに比べて気密性、化学的安定 性に優れ、塩化物系廃棄物などの潮解性を持つ物質でも 漏洩を防止することができる。また、安全性については、 保管容器の移送時に落下による衝撃を受けた場合に内容 物が漏洩しないことを実証試験等により検証する必要が あるが¹⁾、これまでに評価は実施されていない。

そこで本報告では、新たに開発した保管容器を用いた 落下試験を行い、その安全性について評価した。

2. 試験概要

2.1. 保管容器

図2に保管容器の断面図を、表1に主要仕様を示す。 今回開発した保管容器は、米国NRC(原子力規制委員会) において HIC(高性能容器)としての認可を取得してい るドラム缶タイプ PIC 容器をベースに、容量を約1m³と したものである。落下衝撃を受けて内容物が漏洩しない よう、外部を鋼製容器(ステンレス SUS304)で被覆し、 蓋部の固定方法を工夫した他、落下衝撃の緩衝を目的に、 容器底部に緩衝リング(図2の赤丸箇所)を設置し、隙 間部の充填材には弾性係数が比較的小さい高流動モルタ ルを適用した。

図2 保管容器の断面図

表1 保管容器の主要仕様

	項目	仕様		
ادير جب	内側PIC容器	SFPIC (鋼繊維補強ポリマー含浸コンクリート)		
材料	充填材部	モルタル(高流動充填材)		
	外側鋼製容器	ステンレス(SUS304)		
+ :+	胴体部外径	1,350 mm		
<u>بح</u> ز (ب	高さ(鋼製容器蓋含む)	1,465 mm		
容量		1.19 m ³		
	空重量	約2.4 ton		
重量	設計総重量	約5.0 ton (空容器重量及び収納物重量)		

キーワード: 落下抵抗性、ポリマー含浸コンクリート、PIC 容器、放射性廃棄物 連絡先: 〒285-8655 太平洋セメント(株) 中央研究所 TEL043-498-3867

2.2. 試験方法

図3に落下試験で想定したケースを示す。放射性廃棄 物を保管する施設内において、ボックスカルバートなど の囲い構造物に保管容器を最大3段積み上げる際に事故 が発生し、保管容器が正立状態で垂直自由落下すること を想定した。この時の最大吊上げ高さは、2段目の保管 容器の上端までの高さ(約2.88m)に、囲い構造物の高 さや吊上げ時の変動幅を考慮して3.5mに設定した。

写真1に実際に行った落下試験の状況を示す。落下試験では、保管容器をクレーン車により所定の高さに吊上げた後、ワイヤーロープを切断し、コンクリート上に厚さ50 mmの鋼板を設置した落下ベッド上に落下させた。また、落下時の挙動を高速度カメラで観察するため、保管容器にはターゲットマーカーを貼付した。

表2に落下試験水準を示す。保管容器は3個試作し、 保管容器に充填する内容物には、汚染水を想定した水 (CASE 1)と、今後発生が予想される炭酸塩スラリー脱 水物(比重:約2.5)の代替として比重が近い砂(比重: 約2.6)を使用した(CASE 2)。また比較として、空容器 でも試験を実施した(CASE 3)。CASE 1及び2では、保 管容器内(容量:1.19m³)に最大 85%の放射性廃棄物が充 填されると想定し、試験時の内容物は容積が概ね 1m³と なるよう調整した。落下後の保管容器の健全性は、落下 直後に目視による外観観察と内容物の漏洩の有無を確 認した後、内容物を取り出して満水になるまで注水し、 24時間以上経過した後での漏水の有無から判断した。

3. 試験結果

表3に試験結果を示す。CASE 1~3のいずれの水準に おいても、外観に有害な損傷は見られず、内容物や水分 の漏洩も確認されなかった。また、落下後の状況確認に おいて、内部 PIC 容器の微細なひび割れや外部鋼製容器 底部に 11~14 mmのへこみが観察されたが、蓋の取り外 しや内容物の取り出しも問題なく行うことができ、保管 容器の健全性に及ぼす影響は確認されなかった。

4. まとめ

今回の結果から、新たに開発した保管容器は落下によ る衝撃を受けても健全に機能し、その安全性が確認され た。今後は、高速度カメラの画像データを活用し、保管 容器の落下後における動的挙動性状やひび割れ発生状 況について詳細な数値解析を実施する予定である。

参考文献

 1) 大場啓汰、多田克彦、前堀伸平、川瀬良司、栗橋祐介: 放射性廃棄物を保管対象とした鉄筋コンクリート製容器の落下試験、土木学会第71回年次学術講演概要集, Vol.71, V-509, pp.1195-1196, 2016.9

図3 落下試験で想定したケース

写真1 落下試験状況 (左:落下前、右:落下後)

表2 落下試験水準

落下試験 水準	CASE 1	CASE 2	CASE 3			
試験重量	3.40t	3.99t	2.40t			
試験重量 内訳	PIC容器重量:2.40t 内容物重量:1.01t	PIC容器重量:2.40t 内容物重量:1.59t	PIC容器重量:2.40t 内容物重量:なし			
落下高さ	3.5m	3.5m	3.5m			
落下姿勢	垂直自由落下					
落下面	鋼板50mm					
内容物	水 (容器内容積1.192m ³ に対し85%収納)	砂 (容器内容積1.192m ³ に対し85%収納)	なし			
/7* A 44	①目視により、外観に有害な損傷がないか確認					
健全性 確認方法	②PIC容器内容物の漏えいの有無により確認					
ᄩᅖᇮᄭᇧᇩ	③水注水24時間後に水漏れ確認					

表3 落下試験結果

落下試験水準			CASE 1	CASE 2	CASE 3	
健全性確認結果			①外観に有害な損傷なし			
			②内容物の漏えいなし			
			 ③水漏れなし 			
	外側鋼製容器 蓋の取り外し		問題なく取り外せた			
その他の状況確認	内側PIC容器 小蓋の取り外し		問題なく取り外せた			
	内容物の取り出し		問題なく取り出せた			
	内側PIC容器 ひび割れ 発生状況	蓋	微細なひび割れが発生			
		本体 側面	微細なひび割れ 数本発生	ひび割れなし	ひび割れなし	
		本体 底部	円周状に全周ひび割れが発生			
	外側鋼製容器底部 の状況		落下後に底部沈みこみ確認			
	底部中心へこみ量:		下向きに約14mm	下向きに約11mm	下向きに約11mm	