-445

室内試験に基づく現地盤の凍上・沈下予測の評価事例

(株)精研	正会員	〇大石	雅人
(株)大林組	正会員	仙名	宏
(株)精研	非会員	大畝	丈広
大阪ガス(株)	正会員	大西	俊輔

1. はじめに

人工的に地盤を凍結させ、その強度や止水性の向上を図る地盤凍結工法では、凍結膨張や解凍時の体積収縮が その周辺構造物に及ぼす影響を把握する必要がある.地盤の凍上性を確認する手段は、サンプリング土を用いた 凍上・沈下試験¹⁾,室内試験データを収録した凍結性状データベース²⁾検索などがある.

本報では、未凍結サンプリング土を用いた凍上・沈下試験、凍結サンプリング土を用いた解凍沈下試験の結果 を報告する.さらに、凍上・沈下試験から推定する現地の凍結膨張率を基に、現地盤から採取した凍土と未凍結 土の間隙比の比較やサンプリング凍土を用いた解凍沈下試験から推定する現地の凍結膨張率の妥当性を確認した. また、凍上・沈下試験結果から解凍沈下試験の結果を推定し、解凍沈下試験結果との整合性を確認した.

2. サンプリング試料土および室内試験

本報では、未凍結土を対象に凍上・沈下試験、凍土を対象に解凍沈下試験を行った。各試験で、沖積層および 洪積層から採取した粘性土(Ac層, Dc層)を試料土とした。両試料土とも、薄い細砂層と粘性土層とが交互に堆積 しており、全体的に不均質な試料土であった。凍土には、厚みや分布が不規則なアイスレンズが存在し、Dc層の アイスレンズが Ac層より厚い傾向であった。

凍上・沈下試験では,試料土に任意の拘束応力σlを載荷して,下端から一定速度で凍結を行う¹⁾. 試験の凍結

速度 U は 1mm/h とした. 試料土の凍結に伴う供試体の変位量 *dh* をモニタリングし,凍結規準化完了時¹⁾の *dh* を基に図 1(a) の式(1)で表される凍結膨張率*ξ*を求めた. ここで,*H* は凍結前 の供試体高さである. また,解凍収縮率*ζ*,は,図 1(a) の式(2) で表される. *ds* は凍結前から解凍後の変位量で,収縮変位は 負の値となる. 試験結果を図 2 に示す. 両試料土の結果を比 較すると,*ξ*は Dc 層が大きく,*ζ*,では明確な差はない.

解凍沈下試験では、整形した凍土に拘束応力のを与え、下 端を-10℃,上端を0℃で一定時間養生した後,解 (%) 凍を開始した. 試験中のσi は, Ac 層で 0.15MN/m², \hat{v} Dc 層で 0.20MN/m² である. 解凍時の上下端温度 解凍収縮率 は+10℃とし、両端面から一次元的に解凍を進行 させた. 解凍体積変化率η。を図1(b)の式(3)で表す. ここで、 H_f は解凍前の凍土供試体の高さ、 dh_f は解 ŵ 結膨張率 凍後の変位量を表し,収縮変位は負の値で示す. 試験結果を図3に白の凡例で示す.Ac層に比べて, 颩 Dc層でより大きい収縮変位が生じるのは、図1に 示す定義から $dh_f = -dh + ds$ の関係が成り立つこと,

キーワード 凍土,凍結膨張,解凍沈下,地盤凍結

〒561-0894 大阪府豊中市勝部 1-2-18 (株)精研 技術開発部 TEL.(06)6858-0865 FAX.(06)6858-0903

図2のように Dc 層が Ac 層より大きな膨張性を持つことから説明できる.

3. 現地盤での凍結膨張に及ぼす凍結速度,動水抵抗の影響

式(4)に示すように、凍結膨張率 ξ は、有効応力 σ と凍結速度 Uの関数 ¹⁾である.ここで、 ξ_0 、 σ_0 、 U_0 は土固有の 凍上定数である. $\xi = \xi_1 + \frac{\sigma_0}{(1 + \sqrt{U_0})}$ (4)

$$\xi = \xi_0 + \frac{\sigma_0}{\sigma} \left(1 + \sqrt{\frac{U_0}{U}} \right) \quad (4)$$

Ac 層, Dc 層ともに,試験結果から凍上定数を求め,図4に実線で示すようにUが ξ に及ぼす影響を確認した.また,図中には,U = 1mm/hで実施した試験結果を黒の凡例で示す.

凍結時に吸水を伴う場合,Uと拘束応力σiが同じであっても,室内試験に比べて現地盤のζは小さくなることがある.これは,室内試験と現地盤における間隙水の動水抵抗³⁾が異なるためである.動水抵抗の影響は,未凍結土の透水係数 k,凍結面から吸水面までの距離によって変化する.

現地盤におけるこれらの条件を適用し求めた *ξと U*の関係を図4に破線で示す. Ac 層では,破線と実線の差がなく, Dc 層では,室内試験より現地盤の*ξ*が小さい. Ac 層の方が動水抵抗の影響が小さいのは,未凍結地盤の *k* が Dc 層と比較して,数オーダーほど大きいためである.

4. 現地盤における凍結膨張率の推定

サンプリング凍土を用いて,現地盤における凍結膨張率の推定を試みた. 解凍沈下試験から求まる解凍体積変化率 η_s は,図1に示すように,凍結膨張 変位 *dh* と解凍収縮変位 *ds* の 2 つの変位成分による.サンプリング凍土が現 地盤において凍結膨張率*ξ*で凍結している場合,*ξ*はその定義から η_s と*ζ*,を用 いて式(5)で表現できる.また,解凍沈下試験前後の供試体間隙比の変化も, *dh* と *ds* の 2 成分によるため,*ξ*を式(6)で表現できる.ここで,*e*_fはサンプ リング凍土の間隙比,*e*_hはサンプリング凍土が解凍した後の間隙比である.

$$\xi = \frac{\zeta_s - \eta_s}{1 + \eta_s} \quad (5) \qquad \qquad \xi = \frac{\zeta_s (e_f + 1) + e_f - e_{th}}{1 + e_{th}} \quad (6)$$

式(5),(6)から現地盤の*ξ*を求め,図4に白色,灰色の凡例で示す.なお, サンプリング凍土の凍結速度としては,地盤の熱伝導解析法⁴に採取位置と 現地の温度条件を与えた結果,0.09mm/hであったためこれを使用した.

図4に破線で示した、現地盤の動水抵抗および凍結速度Uを考慮して求めた なとサンプリング凍土から求めた なとを比較すると、Ac層ではほとんど 一致し、Dc層では両者の差が5%の範囲に収まっている。未凍結地盤の不 均一性およびサンプリング凍土に生じているアイスレンズの不規則性を考 慮すると、サンプリング凍土の間隙比の変化および凍土の解凍沈下試験から 推定する凍結膨張率は、Ac層、Dc層ともに妥当であったと考えられる。

5. 解凍沈下試験結果の妥当性

上記と同様の手順で求めた,動水抵抗および*U*を考慮した*ら*と凍上・沈下 試験から求まる*ら*を基に推定した解凍体積変化率*η*。を図3中に灰色の凡例で 示す.図中の線で,*η*。の凍結膨張成分と解凍収縮成分とを表現している.上 記の手段で推定した*η*。は,解凍沈下試験と概ね一致し,解凍沈下試験結果と 凍上・沈下試験結果の整合性が示された.また,凍上・沈下試験では-5%

○ Dc層

● Dc層

 \bigcirc

 \bigcirc

 $(\sigma_1 = 0.20 \text{MN/m}^2)$

-dh成分

*ds*成分

◇ Ac層

◆ Ac層

 $(\sigma_1 = 0.15 \text{MN/m}^2)$

0

%

 η_s

禄 -10

뇐

変

₩ 4 -20

解凍

凍上・沈下試験から推定

-dh成分

*⊗ ds*成分

$\mathbb{H}_{10} = 0.15 \text{MN/m}^2$ $(\sigma_1 = 0.15 \text{MN/m}^2)$ $(\sigma_1 = 0.15 \text{MN/m}^2)$ $(\sigma_1 = 0.15 \text{MN/m}^2)$ $(\sigma_1 = 0.15 \text{MN/m}^2)$

図4 凍結速度と凍結膨張率との関係

程度の*ζ*_sであっても,凍結膨張量によっては,解凍沈下試験から求まる*η*_sは20%程度生じ得ることが確認できた. 文献 1)高志他(1974):雪氷,Vol.36,No.2,pp.1-20. 2)上田他(1999):地盤工学研究発表会 D-8,pp.625-626. 3)高志他(1976):雪氷,Vol.38,No.1,pp.1-10. 4)松岡他(2015):土木学会論文集 C,Vol.71,No.2,pp.125-135.

