トンネルの薄肉支保工に関する基礎的研究

首都大学東京大学院	学生会員	○中島	秀
首都大学東京大学院	正会員	土門	岡山
首都大学東京大学院	正会員	西村	和夫

1. 目的

山岳トンネルの標準工法となっている NATM では,地山自身が有する支保機能を有効に利用することにより,作用する土圧を軽減して薄肉支保工によって合理的に支持することが基本であるが,地山自身の支保機能

を評価することは難しい.これまでも,単純化した薄肉モデルによるトンネ ルの模型安定実験は行われているが,定量的にそのメカニズムを示すまでに は至っていない.本研究では,基礎的実験としてコピー用紙で超薄肉円筒の トンネル支保を,アルミ棒積層体で周辺地山をモデル化した実験を行い,そ の挙動を DEM (個別要素法)による解析で再現し,周辺地山と吹付け支保 の相互作用に着目することで土圧と薄肉支保工の作用効果を検討する.

2. 模型実験

(1) 実験材料

地山材料には, 簡便で再現性も期待できることや一般の砂の内部摩擦 角に近いことなどより, **表1-1**に示す物性のアルミ棒積層体を使用した. トンネル模型は, 厚さ 0.09mm のコピー用紙 (坪量 64g/m²) 1 枚をアルミ 材質の内型に巻き付け, スティックのりで筒状に接着して作成した.奥 行きは 100mm である.

(2) 方法

アルミ材質の内型にコピー用紙 1 枚を巻き付けてトンネル模型を作成 し、地山モデルに埋設し、その後内型のみを引き抜くことで掘削を表現し た.トンネルの下方領域は 50mm とした. 埋設, 掘削模擬の様子を図 2-1, 図 2-2 に示す.

(3) 実験ケース

実験は、トンネル横断面形状と土被りをパラメータとし、円形断面 1 つと、縦横比が 0.4, 0.5, 0.6, 0.7, 0.8 の楕円形断面 5 つに対し、土被り 1D ~3D (D:トンネル幅で 50mm) の 3 つの計 18 ケースで行った.

(4) 実験結果

縦横比 0.5~1.0 では掘削後に全てのケースで 10 分以上トンネルは自 立した.しかし,今回の実験ケースで最も扁平な断面である縦横比 0.4 での結果は表 2-1 にようになり,土被り 1D では掘削後に 10 分以上自 立するというケースが見られたが,土被り 2D では 10 分以上自立する ケースはなく,掘削直後,又は数十秒後に崩壊した.また,崩壊挙動と しては,天端部から崩壊するケースと,インバート部から崩壊するケー スの 2 パターンを確認した.

キーワード: トンネル, 薄肉支保工, 模型実験, DEM

連絡先: 首都大学東京 住所〒192-0397 東京都八王子市南大沢 1-1 TEL042-677-1111 (代表)

表 1-1 地山材料の物性

材質	アルミ合金
長さ(mm)	100
径(mm)	1.6 : 3.0
重量比	3:2
単位体積重量(kN/m ³)	21.4
粘着力(N/mm ²)	0
内部摩擦角(゜)	30

図 2-1 埋設(円形断面)

図 2-2 掘削(円形断面)

表 2-1 実験結果

ケース6(縦横比0.4)						
土被り	回数	掘削直後	自立時間			
	1	自立	10分以上			
1D	2	自立	10分以上			
	3	自立	1分20秒			
2D	1	崩壊	0			
	2	崩壊	0			
	3	自立	26秒			

3. DEM による再現解析

(1) 解析方法

今回,解析手法として DEM (個別要素法)を用いた.従来のトンネルの解析では FEM (有限要素法)や FDM (有限差分法)が主に用いられているが,これらは連続体の変形解析に適していて不連続体の表現や地山の崩壊を模擬することは難しい. DEM は不連続体や様々な崩壊現象を模擬することができるため、本実験のような粘着力のない砂質土を模擬したアルミ棒積層体の挙動を

再現するのに適している. なお,ここで用いる地山モデルの 円形要素は,接触点は1点のばねであるが, (3) で述べる 吹付け支保のモデルの円形要素は接触部に分布ばねを配す ることができ,接触点で軸力,せん断力,曲げモーメントを 伝達できる.

(2)物性值

解析にあたって、コピー用紙をモデル化するために実験で コピー用紙の軸剛性、曲げ剛性を求め、その後 DEM によるた わみ試験、一軸圧縮試験で吹付け支保がコピー用紙の剛性に なるよう物性値を決定した.地山(アルミ棒)の物性は、DEM による単純せん断試験で仮想縦弾性係数と要素間摩擦角を決 定した.地山および吹付け支保の各物性値を表 3-1 に示す.

(3) 解析ケース

解析は実験と同様に 18 ケースで行い,断面形状,土被りに よる支保効果への影響を比較する.ここでは,円形断面の土 被り 3D における変位と接触圧を図 3-1,図 3-2 に示す.なお, 吹付け支保は分布ばねを有する円要素 1 列でモデル化した.

(4) 結果

実験と同様に縦横比 0.5~1.0 では全ての土被りで自立し, 図 3-1 に示すように変位はほとんどなく,図 3-2 に示すように, 吹付け支保周辺の接触圧が小さいことが確認できる.また,縦 横比 0.4 では実験と同様に崩壊し,その崩壊挙動は実験と同様 に天端部,又はインバート部からの崩壊の2ケースとなり,ど ちらも実験での崩壊挙動を概ね再現できた.天端からの崩壊の 例として図 3-3 に解析での,図 3-4 に実験での崩壊挙動を示す.

4. 結論

縦横比 0.5~1.0 では実験,解析ともに自立し,実験において剛性 の弱いコピー用紙 1 枚でも支保効果を発揮したことや,解析におい て支保周辺に緩み領域が形成されていることから,グラウンドアー チが形成されていることが分かる.また,実験,解析ともにトンネ ルが崩壊した縦横比 0.4 では,断面が扁平なため生じる曲げモーメ ントが大きくなり崩壊したと考えられる.以上のことから今回行っ た実験モデルにおいては,縦横比 0.4 以下ではグラウンドアーチが 形成され難いことが確認できた.今後は吹付け支保の軸力に着目し, 周辺地山と支保工の相互作用を確認していく.

表 3-1 DEM 要素の物性値

		地山円要素	吹付け円要素
	仮想縱弾性係数(N/mm ²)	1000	6000
	反発係数	0	0
	仮想せん断弾性係数比	0.25	0.25
	要素間粘着力(N/mm ²)	0	無限
	要素間摩擦角(゜)	12	50
	許容引張応力(N/mm ²)	0	1000
	単位体積重量(N/mm ³)	2.14×10^{-5}	6.97×10^{-6}
	径(mm)	1.6, 3.0	0.09

図 3-4 崩壊挙動 (実験)