ポータブル動的貫入試験による大型試験体地盤の品質評価

防災科学技術研究所	正会員	〇河又	洋介	防災科学技術研究所	正会員	中澤	博志
名古屋港湾事務所	正会員	寺田	竜士	港湾空港技術研究所	正会員	小濱	英司
消防研究センター	非会員	西	晴樹				

1. はじめに

2017年2月,戦略的イノベーション創造プログラム(SIP)にて, E-ディフェンスを用いた「臨海部 埋立地のコンビナート施設を対象とした液状化(耐震)診断・対策技術の大規模実証実験¹⁾」を実施した。このような地盤系振動台実験にとって,作製した試験体地盤の品質評価は,最も重要なことの一つである。そこで,確実な試験体地盤作製のために, 2016年1月~3月,構造物模型のない試験体地盤を 試作,地盤作製方法の検証および地盤調査を行った。 地盤調査では,複数種の貫入試験を用いている。

振動台実験前の貫入試験は,実験対象である構造 物模型の応答に影響を与えないように,構造物模型 から離れた位置で行うことが一般的である。しかし ながら,振動台実験の試験体には,岸壁,護岸,タ ンク等,複数の構造物模型が広範囲に配置されてお り,貫入試験位置の適切な選定が困難である。

本論文では,振動台実験試験体の構造物模型から 離れた位置における地盤調査結果と,試作地盤にお ける結果を比較することにより,振動台実験で用い た試験体地盤の品質評価を試みる。

2. 試験体概要および作製方法

試作試験体の模式図を図1に示す。E-ディフェ ンス保有の直方体剛土槽(内寸:幅16m×奥行き4m× 高さ5m)に,湿潤状態(含水比5~10%)の宇部珪 砂6号を投入,振動プレートを用いて所定の相対密 度(密詰部Dr≧75%,緩詰部Dr=50%)に締め固 めた。作製した地盤の底部より,水道水をゆっくり と注入することにより,所定の深度まで地盤を飽和 させた。飽和後,標準貫入試験の他,ポータブル動 的貫入試験,ピエゾドライブコーン貫入試験,振動 コーン貫入試験を,密詰部・緩詰部で多数実施した。

振動台実験試験体の模式図を図2に示す。複数の 構造物模型,セメント固化系の改良地盤や砕石層を 設置したこと、一部で乾燥状態の宇部珪砂 6 号を投入・締め固めたこと、飽和に脱気水を用いたことを除き、密詰・緩詰部の相対密度を含めて、試作試験体と同等の仕様・方法で作製した。振動台実験前に、 ポータブル動的貫入試験を、タンク背面の密詰部で 実施している。

3. ポータブル貫入試験による地盤調査

本論文では、試作地盤と振動台実験地盤の双方で 実施した、ポータブル動的貫入試験(PANDA²⁾)の 試験結果について論じる。PANDA は仏 Sol-Solution 社製の試験機で、ハンマーによる打撃力と地盤貫入 量を計測するものである。各試験体地盤における調 査実施位置を、図 1、図 2 に示す。

図1 試作試験体の模式図

キーワード E-ディフェンス,品質管理,ポータブル動的貫入試験,試験体地盤 連絡先 〒673-0515 兵庫県三木市志染町西亀屋 1501-21 河又洋介 TEL:0794-85-8211

-463-

試作地盤における a) 模型地盤 1 緩詰部, b) 模型 地盤 2 緩詰部, c) 模型地盤 2 密詰部の貫入試験結果 を図 3 に示す。各部の試験結果のうち, 平均貫入抵 抗が最小と最大の2箇所の結果をプロットしており, 他の箇所での試験結果は,図 3 に示す 2 箇所のプロ ットの間に概ね収まる。図 3a および図 3b から,緩 詰部の貫入抵抗は,調査位置により幅があることが 見て取れる。砂投入時の状況により,一定のバラつ きが生じるためと考えられる。一方,図 3c より密詰 部は,調査位置によらず同等の貫入抵抗を示してい ることがわかる。図 3d には,密詰部の結果と高い貫 入抵抗を示した緩詰部の結果を比較したものを示す。 同図より,地表面から 1.3 m 付近まで,密詰部の方が 高い貫入抵抗を示していることが見て取れる。

図4aに振動台実験地盤における貫入試験結果を示 す。密詰部2箇所における貫入抵抗は,海側海底面 に相当する深度(1.34 m)より浅い部分ではほぼ同等, 深い部分では顕著に異なっている。図4bは,振動台 試験地盤(密詰部)と試作地盤の試験結果を比較し たものである。地下水位が異なる(試作地盤は地表 面から0.3 m,振動台試験地盤は0.54 m)ため,この 図から単純に比較をすることは難しいが,試作地盤 における貫入抵抗が高い緩詰部に近い値を示してい ることがわかる。2つの試験体地盤の,相対密度が同 等な密詰地盤における貫入抵抗に差異が生じた原因 は,今のところ明らかになっていない。振動台実験 地盤への注水時に,海底面の地盤表面が膨らむ現象 は確認されておらず,注水時に地盤が緩み,密度が 低下したとは考えにくいことから,地盤の飽和度が 影響しているものと推測される。

4. まとめ

簡易なポータブル動的貫入試験の結果から,試験 体地盤の品質評価を試みた。今後,その他の貫入試 験結果や振動台実験時の水圧上昇量等と総合的に分 析し,更なる考察を加える予定である。

謝辞

当実験の推進にあたり,多くの方のご協力をいた だいた。ここに謝意を表するものである。

参考文献

1) 寺田他:周辺施設への影響を考慮した護岸構造物の大規模振動実験,第72回土木学会年次講演会(福岡),2017年(投稿中)

2) Langton, D.D. : The Panda lightweight penetrometer for soil investigation and monitoring material compaction, Ground Engineering September, pp.33-34, 1999.

-464-