砕波に伴い発生する渦による底質の移動についての実験的研究

日本大学大学院	学生会員	O宮内	直哉
玉野総合コンサルタント株式会社	正会員	山崎	崇史
日本大学	正会員	蟚見	浩一

1. はじめに

砕波時に発生する大規模な渦には斜降渦や水平渦が ある. 灘岡ら(1987)は、斜降渦が底質の移動に影響する ことを明らかにしている. 斜降渦の発生分布を評価しな ければならない. しかし、これまでに斜降渦の発生形 態と底質の移動現象を実験的に検討した研究は少数で ある. したがって、斜降渦の海底面への到着と底質の 移動状況については、不明な点が多いのが現状である.

本研究は,砕波時に発生する大規模渦の発生形態を 検討するとともに,斜降渦の底面到達域と底質の移動 状況を関連づけて考究した.

2. 実験概要

本研究では、砕波に起因する斜降渦の発生条件を検討する実験 I,ならびに底面到達分布と底質の移動状況を検討する実験 II と 2 つの水理実験を実施した.実験 I と実験 II はともに、縮尺を 1/60 とし、両面ガラス張りの二次元造波水槽(長さ 28.0m,幅 0.7m,高さ 1.0m)を用いて行った.水槽の水平固定床上に一様海底勾配(勾配 i=1/30)を設置し、一様水深部の水深は h=0.4m とした.渦の底面到達分布と底質の移動状況を確認するために、海底勾配上に一辺 4cm の正方形格子が書かれたアクリル板を設置した.

(1) 斜降渦の発生条件を検討する実験 I

図-2.1に示す水路側方に設置した CCD カメラにより, 渦の構造を可視化する画像を撮影した. CCD カメラの 撮影速度は,30fps である.実験波は,表-2.1に示すよ うにケース1~5の5種類の規則波とし各100波ずつ撮 影した.砕波波高H_b,砕波波長L_bは撮影した画像から 計測した.図-2.3に実験Iの撮影領域を示す.

斜降渦を張・砂村(1993)にならい計7形式に分類し、 発生条件について Galvinの Breaker-type index である Bt と砕波に関する Reynolds 数である Reによって整理した. ここに、Bt, Reの式を(1)と(2)に示す.

$Bt = H_b/gT^2 tan\beta$	(1)
$Re = H_{b}L_{b}/\nu T$	(2)

 H_b : 砕波波高, T:周期, $tan\beta$: 海底勾配, g:重力加 速度, L_b : 砕波波長, 動粘性係数 $v=0.01 cm^2/s$ である.

(2) 底面到達分布・底質の状況を検討する実験Ⅱ 図-2.2 に示す水路側方・上方に設置したデジタルビ デオカメラにより,渦の底面到達位置を可視化する画 像を撮影した.デジタルビデオカメラの撮影速度は, 30fps である.

キーワード 砕波,斜降渦,底面到達渦

連絡先 〒275-8575 千葉県習志野市泉町 1-2-1 TEL047-474-2420

図-2.2 水槽概略図(実験Ⅱ)

unit:em	Breaking Wave Point	Incident wave	unit:em
Incident wave	PA1(High Speed Camera)	Incident wave	PA ₂₋₆ (Digital Video Camera)
-	50~400		

図-2.3 撮影領域(実験Ⅰ)図-2.4 撮影領域(実験Ⅱ)

表-2.1 実験 Case

安殿とって	入射波高	周期
夫歌ゲース	H _I [cm]	T [s]
1	12.0	1.4
2	14.0	1.4
3	16.0	1.4
4	18.0	1.8
5	20.0	2.0

撮影範囲を図-2.4 に示す.実験波は,底面到達渦によ る砕石の移動が顕著に見られた表-2.1 に示すケース 3 ~5とした.得られたビデオ画像を解析し,100 波あた りに海底面の正方格子に渦が到達した数を求めた.ま た,底質はJISA5001 に規定されている砕石 S-57号(中 央粒経d₅₀ = 1.7mm)とし水槽壁と 5cm の間隔を設けて 一層敷いた.移動状況は造波開始後 20,40,60,80, 100 波毎に一格子面積あたりの残石量を計測し底質の 移動分布を求めた.

(1) 渦の発生条件(実験I)

水平渦や斜降渦は既往の研究により1~3重渦となる ことが示されていたが、図-3.1(a)に示すように新たに 砕波時の波内部に 4 つの斜降渦が岸沖方向に形成され る4重渦の発生を確認した.4重渦と3重渦では、それ ぞれ 4 つの斜降渦(Quadruple)と図-3.1(b) に示す 3 つの 斜降渦(Triple)が発生した. 2 重渦では 2 つの斜降渦 (Double)と図-3.1(c)に示す1つの斜降渦と水平渦が斜 降渦へ変移する形式(D-A),および斜降渦と水平渦が1 つずつ形成される形式(D-B)の 3 種, 1 重渦では図 -3.1(d)に示す1つ斜降渦(Single)と1つの水平渦が斜降 渦へ変移する形式(S-A),および1つの水平渦(S-B)が生 成される形式の3種が発生した.

渦の発生条件は、砕波に関する Re 数と Breakertype index(Bt)に支配され, Re 数が大きいほど4 重渦の発生 数が増加した.ケース 1~3 では図-3.2(a)に示すよう に, Re 数と Bt が比較的小さい 8.0×10⁴≤Re≤1.6×10⁵, 0.11≤Bt≤0.18 では 1 重渦の発生数が多い. 一方, Re 数とBtが大きくなる 1.6×10⁵≤Re≤3.0×10⁵, 0.16≤Bt≤ 0.32 では3 重渦の発生頻度が高くなる.1 重渦と3 重渦 が発生する中間域では2重渦の生成が顕著となること から、この中間域は1重渦から3重渦への遷移域であ ると推察できる. Re 数がケース 1~3 より大きいケース 4 と 5 では図-3.2(b)に示すように、3 重渦と4 重渦が それぞれ約8割と約1割の発生確率で生成され、4重渦 が生じる下限の Re 数は約 3.4×10⁵ であった.

(2) 底面到達分布・底質の移動分布(実験Ⅱ)

砕波形式が同一の場合,砕波帯相似パラメータとが 大きくなると斜降渦の底面到達数は増加し、底面到達 域も拡大した. 図-4.1(a), 図-4.1(b)に示すように, ケース4と5の斜降渦の底面到達地点の平面分布は、 両ケースにおいて砕波点(X/L_b=0.0,L_b:砕波波長)から岸 側の 0.22≤X/L_b≤0.275 に集中的に位置し,ケース 5(*ξ* =0.18)と 4(ξ=0.17)の規準化した渦の底面到達数は、ケ ース5ではケース4の約4.5倍となっていた. 斜降渦の 底面到達位置は L_bに依存して変化し、ケース5では砕 波点 X/L_b=0.0 から岸側へ X ≅ 0.075L_b 毎となる X/L_b ≅

0.075, X/Lb ≈ 0.15, X/Lb ≈ 0.225 の 3 領域への底面到着が 顕著であり、これは3重渦の形成を示唆している.

ケース4と5では図-4.3に示すように、底質は舌状 の侵食域が出現する形状に分布し、造波数の増加に伴 い侵食域は拡大した.格子に残留した底質面積 A'を格 子面積 A で除した A'/A が 0.3 以下となる舌状の侵食域 の位置は X ≅ 0.075L_b 毎に生じる斜降渦の底面到達位置 と一致しており, 斜降渦の底面到着位置に起因して, 底質の侵食域は発生すると考えられる.

参考文献

- 1) 灘岡和夫・上野成三・五十嵐竜行(1987): 砕波帯内 の三次元的大規模渦構造と浮遊砂の現地観測,第 34 回海岸工学論文集, pp. 21-25.
- 2) 張達平・砂村継夫(1993): 砕波帯における底面到達 渦に関する実験的研究,海岸工学論文集,第40巻, pp.61-65.
- 3) 鷲見浩一, 出村拓也, 山清太郎, 落合実, 遠藤茂勝: 斜降渦の平面的な分布特性に関する実験的研究、土 木学会論文集 B2(海岸工学), Vol.66, No1, pp.81-85, 2010.