# スルースゲート下流側の射流の水面変動と乱流境界層の発達状態との関係

| 日本大学大学院理工学研究科 | 学生会員   | ○佐藤柳言 |
|---------------|--------|-------|
| 日本大学大学院理工学研究科 | 学生会員   | 内田健太  |
| 日本大学理工学部      | 正会員    | 高橋正行  |
| 日本大学理工学部      | フェロー会員 | 大津岩夫  |

## 1. まえがき

一般に跳水中には空気が取り込まれ,多量の気泡が混入 された流れとなっている.スルースゲート下流側に形成さ れる跳水への流入射流は,乱流境界層の発達状態によって Undeveloped inflow (以下,UDと略す),Partially developed inflow (PDと略す),および Fully developed inflow (FDと 略す)に分けられる<sup>1),2)</sup>.ここに,UDはスルースゲート下 流側の縮流部に跳水始端が位置する場合,FDは乱流境界層 が発達中の射流に跳水始端が位置する場合,FDは乱流境界 層が水面まで到達した断面よりも下流側の射流に跳水始端 が位置する場合である.

Takahashi and Ohtsu<sup>3)</sup>は、高速度ビデオカメラを用いた 跳水内部への空気混入状況の観察と跳水内部の空気混入率 C[= 空気の体積 / (空気の体積+水の体積)]の測定値に基 づき, 流入射流の水面と跳水の表面渦先端との交点である impingement point 付近から空気が混入する場合と表面渦の breaking によって空気が混入する場合の両方によって跳水 中に空気が混入することを示した.また,流入射流の乱流 境界層の発達状態が UD と PD (δ/h = 0.5) (PD<sub>0.5</sub> と略す) の場合(図1(a),図1(b))は流入射流の水面は滑らかで変動 がなく、PD ( $\delta/h = 0.8$ ) (PD<sub>0.8</sub>と略す)の場合(図 1(c)) は凹凸と変動が間欠的に生じ,FDの場合(図1(d))は凹凸 と変動が常に生じていることを指摘し、流入射流の水面の 凹凸と変動の有無が跳水内の advective diffusion region の空 気混入率 C に影響を与えることを示した.ここに、 $\delta$  は乱 流境界層厚さ, h は水深である. しかしながら, 射流水面の 凹凸と変動は定量的に明らかにされておらず、乱流境界層 の発達状態と水面変動との関係に不明な点が残されている.

本研究は、スルースゲート下流側に形成される射流の水 面変動と乱流境界層の発達状態との関係について広範囲の フルード数に対して実験的検討を行い、スルースゲート下 流側の射流の水面変動について定量的に明らかにしようと したものである.



#### 2. 実験

実験は、スルースゲートを有する水路幅 B = 0.4 m の滑面 長方形断面水平水路において、表1に示される条件の射流を 対象に行われた.水深 h は超音波水位計(採取間隔 10 ms, 採取時間 200 s, 設置高さは水面より上方の 70 ~ 100 mm) を用いて評価断面の水路横断方向中央部で 10 回測定され た.ここに、 $F_r [= V/\sqrt{gh}]$ はフルード数、g は重力加速 度、V は断面平均流速、 $R_e [= Vh/v]$ はレイノルズ数、v は水の動粘性係数である.評価断面は乱流境界層の発達状 態が UD、PD( $\delta/h = 0.3, 0.5, 0.7, 0.75, 0.8, 0.9$ )、FD ( $x = x_{cp}, 1.5x_{cp}, 1.7x_{cp}, 2x_{cp}$ )になる断面を対象とした. なお、UD の場合は x = 0、PD の場合は $\delta/h = 0.3, 0.5,$ 0.7, 0.75, 0.8 および 0.9 となる x、FD の場合は  $x = x_{cp},$  $1.5x_{cp}, 1.7x_{cp}, 2x_{cp}$ とした.ここに、xは縮流部から評価 断面までの流下方向距離、 $x_{cp}$ は乱流境界層が水面に到達す る critical point の x である(図 2 参照).

与えられた  $F_r$ ,  $R_e$ , および $\delta/h$  (UD, PD, FD) となる  $x/h_0$ を求めるため, Ohtsu and Yasuda の方法<sup>4)</sup>を用いて $\delta$ , h, xを計算し, 表 1 の条件が得られるように単位幅流量 q, スルースゲートの開口高 a を調整して実験を行った. こ こに,  $h_0$  [= 0.64a] は縮流部 (x = 0) における水深である. なお,  $R_e$  は  $R_e \ge 6.0 \times 10^4$  のとき, 自由跳水の流況に対す る  $R_e$  の影響がない<sup>5)</sup> ことから,  $R_e = 6.2 \times 10^4$  を対象と した.

表1 実験条件

| Inflow condition | $F_r$          | $R_e \times 10^{-4}$ | В   | $\delta/h$ |
|------------------|----------------|----------------------|-----|------------|
|                  | (-)            | (-)                  | (m) | (-)        |
| UD               | $4.2 \sim 7.2$ | 6.2                  | 0.4 | 0          |
| PD               | 7.2            | 6.2                  | 0.4 | 0.3~0.9    |
| FD               | $4.2\sim7.2$   | 6.2                  | 0.4 | 1          |

## 3. 乱流境界層の発達状態と水面変動との関係

乱流境界層の発達状態  $\delta/h$  と射流水深 h の標準偏差  $\sqrt{h'^2}$  との関係および水面変動の流下方向変化を図 3 に示す.ここに,  $\overline{h}$  は時間平均された射流水深,  $h' [= \overline{h} - h]$  は変動水 深である.

図 3 に示されるように、 $\sqrt{h'^2/h}$ は UD ( $\delta/h = 0$ ) と PD ( $0 < \delta/h < 1$ )に比べて FD ( $\delta/h = 1$ )のほうが大きい.す なわち、乱流境界層が発達すると射流水面の凹凸と変動は大 きくなる.UD と PD ( $0 < \delta/h \leq 0.7$ )の $\sqrt{h'^2/h}$ はほぼ一定 の値を示す.これは、UD と PD ( $0 < \delta/h \leq 0.7$ )の水面に凹 凸と変動が生じないことを示しており、UD と PD<sub>0.5</sub>の水面 の凹凸と変動が目視では観察されなかった結果(図 1(a),図 1(b))と対応している.FD ( $1.5x_{cp} \leq x \leq 2x_{cp}$ )の $\sqrt{h'^2/h}$ はほぼ一定の値を示す.これは、FD ( $1.5x_{cp} \leq x \leq 2x_{cp}$ )で は乱流境界層が水面に到達した後、水面付近の乱れが十分に

キーワード:空気混入率,射流水面,水面変動,乱流境界層の発達状態 連絡先:〒101-8308 東京都千代田区神田駿河台1-8-14 日本大学理工学部土木工学科 TEL.03-3259-0676



発達した状態になることを示している.また, FD  $(x = x_{cp})$ の $\sqrt{h'^2}/\overline{h}$ はFD  $(1.5x_{cp} \lesssim x \lesssim 2x_{cp})$ に比べて小さい.こ れは, FD (x = x<sub>cp</sub>) は乱流境界層が水面に到達する critical point の断面であり, FD  $(1.5x_{cp} \lesssim x \lesssim 2x_{cp})$  に比べて水面 付近の乱れが十分に発達していないためと考えられる. PD  $(0.8 \leq \delta/h < 1)$ では, 乱流境界層の発達に伴って  $\sqrt{h'^2}/\overline{h}$  は 増加する.これは、射流水面の凹凸と変動は PD ( $\delta/h \approx 0.8$ )

付近で生じ始めることを示しており、PD0.8の水面に間欠的 な凹凸と変動が観察された結果(図1(c))に対応している. このことは、平板上の乱流境界層において、 $y = 1.2\delta$ まで 乱流境界層内の乱れが間欠的に影響を及ぼすこと<sup>6)</sup>と類似 な現象が生じ、 $y = 1.2\delta = 1.2 \times 0.8h = 0.96h \simeq h$ , つまり 水面付近まで乱流境界層内の乱れの影響を受けたものと考 えられる.

# 4. 乱流境界層の発達状態と水面変動との関係に 対するフルード数 *F*<sub>r</sub> の影響

乱流境界層の発達状態と水面変動との関係に対するフ ルード数 Fr の影響を図4に示す.また、参考のため中山ら 7)の実験結果も併せて示す.ただし、中山らが対象とした 射流は  $R_e = 1.3 \times 10^4$ ,  $3.0 \times 10^4$  であるため, 実験値に  $R_e$ の影響が含まれることに注意されたい.

図4に示されるように, UDの場合, Fr の変化によらず  $\sqrt{h'^2/h}$ はほぼ一定の値を示す.これは, UD の水面に凹凸が 生じないためと考えられる. 一方, FD  $(1.5x_{cp} \lesssim x \lesssim 2x_{cp})$ の場合,  $F_r$  が大きくなると  $\sqrt{h'^2}/\overline{h}$  は大きくなる. これは,  $F_r$ の増加に伴って水面付近の v 方向の乱れ強さ  $\sqrt{v'^2}$  [v': y方向の変動流速]が大きくなることが影響したものと考 えられる. つまり, FD の場合, 水面付近の無次元乱れ強さ  $\sqrt{u'^2}/U$  [u': x 方向の変動流速,  $\sqrt{u'^2}: x$  方向の乱れ強さ, U: 乱流境界層外縁流速]は Fr の大きさに関わらず一定値 を示す<sup>3),8)</sup>ため,与えられた射流水深hに対して,Frの 増加に伴い断面平均流速 V は大きくなり、 $\sqrt{u'^2}$  は大きくな る. また,  $\sqrt{v'^2} = 0.55 \sqrt{u'^2}$  である <sup>9</sup> ことから, *Fr* の増加 に伴い  $\sqrt{v'^2}$  が大きくなる.

### 5. まとめ

スルースゲート下流側に形成される射流の水面変動と乱 流境界層の発達状態との関係について定量的検討を行った 結果;①乱流境界層の発達に伴い射流水面の凹凸と変動は大 きくなる; ②  $F_r$  = 7.2 の場合, PD (0.7  $\leq \delta/h \leq 0.8$ ) で射流 水面に凹凸と変動が生じ始める;③水面が十分に発達した状 態の射流は FD  $(x \ge 1.5x_{cp})$  である; ④ UD では  $F_r$  の変化 によらず水面に凹凸は生じない; ⑤ FD ( $1.5x_{cp} \lesssim x \lesssim 2x_{cp}$ ) では Fr の増加に伴って水面の凹凸と変動が大きくなる,こ とが示された.



図3 射流の水面変動の流下方向変化



図4 UDと FDの射流の水面変動に対するフルード数の影響

#### 参考文献

- 1) 高橋正行,大津岩夫:跳水内部の空気混入特性,土木学 会論文集 B1(水工学), 71(4), I\_529-I\_534, 2015.
- 2) 高橋正行,大津岩夫:跳水内部の空気混入特性に対する 流入射流の影響,水工学論文集, 53, 985–990, 2009. 3) Takahashi, M. and Ohtsu, I.: Effects of inflows on air en-
- trainment in hydraulic jumps below a gate, J. Hydr. Res., 55(2), 259–268, 2017.
- 4) Ohtsu, I. and Yasuda, Y.: Characteristics of supercritical flow below sluice gate, J. Hydr. Engrg., 120(3), 332-346, 1994.
- 5) 持田俊, 安田陽一, 高橋正行, 大津岩夫: 自由跳水の流 況形成に対するレイノルズ数の影響, 土木学会年次学術 講演会概要集, 65, Ⅱ 部門, 391–392, 2010.
  6) Klebanoff, P.S.: Characteristics of turbulence in boundary
- layer with zero pressure gradient, NACA Rep., 1247, 1955.
- 7) 中山昭彦, 中瀬幸典, 横嶋哲, 藤田一郎: 水面変動をパ ラメータとした開水路乱流計算のための 2 方程式モデル の改良,応用力学論文集, 3, 745–752, 2000. 8) Tominaga, A. and Nezu, I.: Velocity profiles in steep open-
- channel flows, J. Hydr. Engrg., 118(1), 73-90, 1992.
- 9) Auel, C., Albayrak, I. and Boes, R. M.: Turbulence char-acteristics in supercritical open channel flows: effects of Froude number and aspect ratio, J. Hydr. Engrg., 140(4), 04014004-16, 2014.