氾濫解析における堤内地の街区構造モデル化に際しての一考察: 東海豪雨時の新川破堤に伴う都市域への浸水過程を対象として

名古屋大学減災連携研究センター 正会員 田代 喬 名古屋大学大学院工学研究科 八木健太郎,正会員 戸田祐嗣

1.はじめに

外水氾濫に伴う都市域の浸水過程に数値解析を適用する際には、堤内地に密集する建物や道路ネットワーク

を適切に考慮することが重要である¹⁾.本報では,建物 や道路縁などから街区構造を表現したうえで,異なる解 像度により変化する効果と影響を考察することにより, 解析時間を節約しながら解析精度を確保しうる条件付与 方法について検討した結果を紹介する.

本研究は(公財)名古屋産業科学研究所受託研究(16-74, 東邦ガス株式会社委託)の一部で,愛知県尾張建設事務 所から各種資料・データの提供を受けて実施した.ここ に記して謝意を表する.

2.材料と方法

2000年9月東海豪雨で破堤した,名古屋市西区あし原 町地先の新川左岸(河口から 16km 地点)周辺地域を対 象とした.新川は延長24.3 km,流域面積約250 km²の都 市河川(1998年度末時点で市街地63%)で,庄内川から 分派して伊勢湾に注いでいる.

氾濫解析には iRIC Nays 2D Flood²⁾を使用した.解析領 域は庄内川と新川で挟まれた地域(約24km²)とし,上 流端では破堤部以外からの流入を遮り(壁条件),その他 の縁端部は自由流出,破堤部以外の河川堤防は障害物と して与えた(図1).流入条件とする氾濫流量八イドログ ラフは,愛知県河川堤防緊急強化検討会³⁾による再現解 析から,図2のように推定し与えた.地形は10m メッシ ュの数値標高モデル⁴⁾を元データとし,建物分布は建築 物ポリゴンデータ⁴⁾,街区構造は道路縁ポリラインデー タ⁴⁾で囲まれる区画を作成し,そこに含まれる建物分布 から建物占有率を0~1 までの11 段階で与えた.図3に は,Arc GIS 10.3 (ESRI ジャパン社)で作成,表示した 建物分布と街区分布(建物占有率で暖色から寒色の順に 塗色)を示す.

解析格子は,マニュアル¹⁾に準拠して 25 m 直交格子を 基本とし,5~250 m と解像度を変化させながら,1) 地形 のみ,2) 格子ごとに建物占有率,3) 街区ごとに建物占 有率を付与する3 ケースを対比させて検討した.

図1 解析領域と境界条件 (背景の空中写真は Google Earth)

図2 破堤部からの推定氾濫流量ハイドログラフ

(建築物,道路縁データ4)から作成)

キーワード 氾濫流,都市域浸水,街区構造,平面2次元水理解析,iRIC Nays 2D Flood 連絡先 〒464-8601 名古屋市千種区不老町1番地名古屋大学減災館401室 TEL052-789-4829

3.結果と考察

表1には,解像度と建物・街 区条件を変化させた各ケース における解析所要時間を示す. 街区単位で建物占有率を与え る 3)では, 各区画に含まれる 解析格子に入力するよう設定 したが、道路で区分された各区 画に 125 m 以上の格子サイズ は収まり切らず 条件付与でき なかったため,1)と同じ結果と なった.一方,解像度の高いケ ースでは,格子に付与する2) より,街区に付与する3)の所 要時間が小さく抑えられるこ とから 効率的な実施が可能に なったと判断される.

図4には,建物や街区による 条件入力の違いが解析結果に 及ぼす影響を示す一例として, 25 m格子における2),3)の浸 水深分布について,破堤からの 経過時間による変化を示す.上 表 1 解析所要時間の対比 (Intel(R) Core(TM) i7-4790 , 16GB メモリ環境下)

解像度による解析所要時間(min.)	5 m	25 m	59 m	125 m	259 m
1) 地形のみ	683.0	12.1	2.15	0.38	0 .20
2) 格子に建物占有率	NA	19.6	3.07	0.78	0.35
3) 街区に建物占有率	711.3	14.6	2.40	0.38	0.20

図 4 25m格子浸水深分布(m)の時間変化(左から 9000,12000,16200 秒経過時) (上段:2)格子に建物占有率,下段:3)街区に建物占有率を付与したケース)

段のように,各格子に建物占有率を入力した2)では,道路ネットワークの連続性が確保できず,建物が粗度として作用した結果,浸水範囲の拡大が阻害されて集中する傾向が見られた一方,各区画に入力した3)では,浸水域が過度に集中せずに相対的に早く拡大する傾向が見られた.また,浸水範囲に着目すると,上段中と下段左,上段右と下段中の結果が類似しており,氾濫流の拡大に関しては0.8~1.2 時間程度の差が見られた.これらの結果から実現象に際しての避難行動などを考えるに,リードタイムが大きく異なる可能性があることから,氾濫解析における建物や街区の入力条件は重要であるものと推察された.

なお,当該事象発生時には破堤以前から内水氾濫が発生していたため,本解析を検証することは困難だが, 地域住民への聞取り調査から得られた定性的な浸水拡大過程⁵⁾の傾向については概ね表現し得た.しかしなが ら,今後,より精度を高めた検討を行うためには再現性の担保が重要であり,遠藤らが実施したような氾濫模 型実験や浸水過程のきめ細やかなモニタリングを通じた検証が課題である.

参考文献

- 1) 国土交通省水管理・国土保全局河川環境課水防企画室・国土技術政策総合研究所河川研究部水害研究室:洪水浸水想定 区域図作成マニュアル(第4版),2015.
- 2) iRIC Project: Nays2DFlood, http://i-ric.org/ja/software/7/.
- 3) 愛知県河川堤防緊急強化検討会:愛知県河川堤防強化緊急強化検討会報告書,2001.
- 4) 国土交通省国土地理院:基盤地図情報, http://www.gsi.go.jp/kiban/index.html.
- 5) 群馬大学工学部建設工学科都市工学講座片田研究室編:平成12年9月東海豪雨災害に関する実態調査・調査報告書,2001
- 6) 遠藤和章・石田時代・鈴木史郎: 氾濫計算モデルの高度化について 豊平川左岸部における氾濫計算 ,第 55 回北海道 開発技術研究発表会,一般財団法人北海道開発協会,<u>http://www.hkk.or.jp/oshirase/20120413aa31.pdf</u>, 2012.