2016年熊本地震の観測波を用いた橋台衝突実験

熊本高等専門学校	正会員	○岩垣	平要
熊本高等専門学校	非会員	別城	小百合
熊本高等専門学校	非会員	山岸	千夏

1. 目的

2016 年熊本地震では、数多くの国道・県道や市町村 道の橋梁が被災した。著者らが損傷を受けた橋梁を調 査した中で、桁同士や橋台への衝突、桁移動などの現象 が確認された¹⁾。被災橋梁個々の原因分析はまだ進行中 ではあるが、著者らは遊間異常に注目して2軸振動台 を用いた加振実験を行った。この衝突現象を回避する 方法として遊問の確保が設計上考えられる手段である が、橋台の移動やパラペット損傷に伴う遊間の変化も 考えられる。しかしながら、落橋防止ケーブルが強軸直 角方向に機能した橋梁もある。そこで、水平2軸加振に よる衝突を伴った桁移動がどのように発生したのかを 検証することを目的とする。

2. 実験条件

(1)入力地震動

入力地震動は、2016 年熊本地震で観測された防災 科学研究所の強震観測網 Kik-Net 益城の地震波のう ち、本震の EW 成分と NS 成分を採用し、振動台(サ ンエス社製)で再現するためにそれぞれ約 60%程度に 加速度調整を行った波形を用いた。加振波形を図1 に示すように、橋軸方向を X 軸とした。

対象模型は単 純桁形式の橋梁

(2)実験模型

とし,約100mm 嵩 上げした台上に 橋台を設置した。 単純桁は床版に アクリル板 (T=10mm)と錘板 (t=4.5mm の鋼

板)を用い,桁は3本の鋼管を接着させて製作した。 支承部は厚さ10mmの天然ゴム板をカットして桁に接 着させ,移動をスムーズにするために 0.5mm 厚のス テンレス板をゴムの下に接着させ,橋台には固定し ていない。実験模型のイメージ図を図2に示し,材 料・寸法諸元を表1に示す。

表1 実験模型の諸元

桁寸法	幅員 150mm,橋長 900mm		
	床板:鋼板(t=4.5)+アクリル板(t=10)		
使用した	桁:角型鋼管(25x25x1.6) 3本		
材料	支承:天然ゴム(NR ゴム) 6か所		
	総重量:100N		
橋台	橋台 アクリル+鋼板(可動仕様)		
ステージ	アクリル板で構成(高さ100mm)		

(3) 計測方法

振動台の挙動は模型に貼付したターゲットマーカ ーの3次元移動を時刻歴でトレースしてサンプリン

グするモーションキ ャプチャ「Venus3D (ノビテック社製)」 を用いた。図3に設 置状態を示すが、3 台の赤外線カメラで 模型に設置したマー カーをトレースする。

図3 実験模型供試体

キーワード: 2016 年熊本地震,橋台衝突,振動実験,桁移動 連絡先:〒866-8501 熊本県八代市平山新町 2627 国立熊本高等専門学校 Tel/Fax: 0965-53-1339 E-mail: iwatsubo@kumamoto-nct.ac.jp -668

(4)実験パラメータ

実験パラメータとして,左右橋台の遊間量を図 4 のように種々設定した。左右橋台と上下流側の遊間 量を設定できるように,橋台は回転・水平移動が可能 であるように製作した。基本モデルとして遊間量を

A1橋台 b a		₩) →Δ x 後	A2橋台		
test case	a	b	С	d	
55-55	5	5	5	5	
55-51	5	5	5	1	
51-51	5	1	5	1	
33-33	3	3	3	3	
11-11	1	1	1	1	
1010-1010	10	10	10	10	

3. 実験結果

実験結果の一部を図5と図6に示す。図5は,4箇 所の遊間量を5mmとしたケースについて,模型桁全 体の移動時刻歴を示す。15s頃にX軸とY軸方向に 大きく移動が発生して,衝突に伴い桁が少しずつ回 転している。桁は両橋台にそれぞれ2回ずつ衝突し ており,衝突のタイミングで回転量が大きくなって いる。図6に3ケースについての平面移動量を示し, 表2に実験結果を示すが,橋台を傾けると挙動が変 わり,実験後の移動量も変わることが分かる。一般的 には桁の衝突は,桁端部がパラペットに真っ直ぐ端 面で衝突すると考えられるが,パラペットを傾ける ことで点で衝突し,さらに水平移動と衝突が繰り返 されて回転が増長していると考えられる。

本実験より,2方向加振実験では確認しづらい挙動

が明確に分かり,実験方法の有効性が確認出来た。今後も熊本地震の被害メカニズムの解明を行っていく 予定としている。なお,本研究は九州地域づくり協会の「H28 熊本地震関連助成事業」の助成で実施した。

図6 桁移動履歴図

ŧ	2	中陸仏の旦奴投動旦の士しん
বহ	۷.	夫釈仮の取於ゆ割軍のよどの

種類	物理量	55-55	55-51	51-51	33-33	11-11	1010-1010
古体加速度	X(gal)	438.6	314.4	216.0	289.0	180.8	550.8
心合加述皮	Y(gal)	133.8	126.8	103.2	129.4	85.6	222.0
実験後 の移動量	$\Delta x(mm)$	2.169	-0.435	-0.448	1.870	-0.504	0.328
	∆y(mm)	-3.479	-4.775	-5.101	-2.504	-3.106	-0.197
	$\Delta \; \theta \; (\rm deg)$	0.1666	0.0280	0.3292	0.1176	0.0783	-0.0851
衝突回数		5	4	5	5	5	3

【参考文献】1)梶田他:2016 熊本地震における地方公共団体管理橋梁の被害調査報告,第36回地震工学研究発表会論文集,A11-992,2016/10.2)防災科学研究所:強震観測網データベース(<u>http://www.kyoshin.bosai.go.jp/kyoshin/</u>),3) 岩坪他:2016 年熊本地震と過去の内陸地震との応答比較実験,平成28年度土木学会西部支部研究発表会,I-016,pp.31-32,2017/3