径厚比の違いを考慮した鋼管杭のM- φ関係について(その2:事例検討)

鋼管杭・鋼矢板技術協会 〇塩崎禎郎 港湾空港技術研究所 大矢陽介

港湾空港技術研究所 小濱英司, 川端雄一郎

1. はじめに

筆者らは,桟橋用の鋼管杭に関して,耐震性能照査にお ける曲げモーメント〜曲率関係(*M-φ* 関係)について検討 を進めている¹⁾.連報(その1)²⁾では,*M-N*(軸力)関係を 規定する耐力の算定式と,限界曲率φ_uを規定する塑性率μの 算定式の提案を行った.本報では,降伏応力の違いへの対 応と,直杭式桟橋に対する事例検討結果を紹介する.

2. 降伏応力の違いへの対応

連報(その1)では、降伏応力σ,=235N/mm²(鋼管杭の規 格 SKK400)を対象として検討を行った.しかし実際の桟 橋では、他の降伏応力の鋼管杭が混用されることも多いた め、降伏応力の影響を評価した.降伏応力が大きくなると 降伏時の付加曲げモーメントが大きくなるため耐力算定式 のべき数 *n* と塑性率μに、式(1)の降伏応力σ,に関する補正 (低減)係数γをかけることにした.

$$\gamma = \sqrt{235/\sigma_{y}} \tag{1}$$

 $\sigma_{\gamma}=315$ N/mm²(鋼管杭の規格SKK490)では、 γ は0.846となる. $\sigma_{\gamma}=315$ N/mm²に対する三次元FEM解析の結果と補正係数 γ を適用した算定式の値を図-1に示す.ここでは、直径1200mmおよび1500mmの円形保持条件に対する結果のみ図示しているが、連報(その1)で対象とした他のケースについても解析結果を良好に説明できた.

3. 事例検討方法

これまでに説明した*M-N*関係と限界曲率が,耐震性能照 査に与える影響を把握するため地震応答解析プログラム FLIP³⁾を用いて事例検討を行った.検討対象は-10m, -13m 水深の直杭式桟橋⁴⁾とした(図-2参照).入力地震動は図-3 の波形を振幅調整して用いた.解析ケースを表-1に示す.

本検討の性能規定は「二箇所以上で全塑性モーメントに 達している杭が存在しない」として,具体的には地中部で 鋼管杭が全塑性モーメントもしくは限界曲率に達しないこ とを照査した.最初に,従来法(降伏応力を低減しないで 求めた全塑性モーメントを折れ点とするバイリニア型の

キーワード:鋼管杭,杭式桟橋,局部座屈,全塑性モーメント,耐震性能照査,地震応答解析 連絡先(〒210-0855 川崎市川崎区南渡田町 1-1 TEL:044-322-6222 FAX:044-322-6519) M-φモデルを用いた方法)による鋼管杭の解析定数を用 いた解析で、地中部で全塑性モーメントが発生しない最 大加速度振幅を求めた. その入力地震動に対して,提案 法を用いて要求性能を満足する鋼管杭の諸元を求めた. 提案法とは, M-N関係の耐力式を反映したM-の関係で解 析を行い、計算で求められた曲率が、限界曲率øuを超え たかどうか照査する方法である. 提案法の細長比で用い る長さしの取り方は、最も海側の杭の上部工下端から仮想 固定点 $1/\beta$ までとした.

4. 事例検討結果

表-2に従来法と提案法で決定した鋼管杭の諸元を示す.

Case-1に対する提案法は、下杭が9mmのままでは、地 中部で限界曲率を超える結果となった. 下杭の板厚を増 やすことも可能であるが、ここでは、材質を上杭と同じ にした.その結果,余裕をもって限界曲率以内となった. Case-2に対する提案法は、従来法の板厚14mmでは限界曲 率まで余裕があり、2mm減の12mmまで限界曲率以下とな った.

Case-3に対する提案法は、従来法と同じ板厚12mmで限 界曲率以下となった. Case-4に対する提案法は、従来法 の下杭が板厚18mmでは限界曲率まで余裕があり、板厚 1mm減の17mmまで限界曲率以下となった.

Case-5に対する提案法は、下杭がSKK400の12mmのま までは、地中部で限界曲率を超える結果となった. 材質 をSKK490としても限界曲率を超え、板厚1mm増の13mm とすることで限界曲率以下となった. Case-6に対する提 案法は、従来法と同じ材質、板厚で限界曲率以下となっ た.

5. おわりに

径厚比の違いを考慮したM-ø関係の提案法を用いて, 直杭式桟橋の耐震性能照査の事例検討を行った. その結 果, D/t=100では提案法と比較して従来法では危険側の評 価となることがあった.一方,D/t=67程度では,提案法 によって高い変形性能を考慮することで、板厚を低減で きるケースが存在することが確認できた.

参考文献

1)大矢陽介ほか:耐震性能照査における鋼管部材のモデル化法 の提案,港湾空港技術研究所報告,2017.2)大矢陽介ほか:径 厚比の違いを考慮した鋼管杭のM-φ関係について(その1), 土木学会年次学術講演会論文集, 投稿中. 3)Iai, S., Matsunaga, Y. and Kameoka, T. : Strain Space Plas-ticity Model for Cyclic Mobility, Soils and Founda-tions, Vol.32, No.2, pp.1-15, 1992. 4) 桒原直範, 長 尾毅:直杭式桟橋の動的特性を考慮した照査用震度の算出方法 ※ 岸田式による応力低減後の値 に関する基礎的研究,国土技術政策総合研究所資料,2010.

解析ケース 表-1

	水深	クレーン	入力 加速度 (m/s ²)	最大 軸力比	上杭(海面 上) 上杭	下杭
Case-1	-10m	-	4.0	0.18	<i>\$</i> 900t9 (SKK490)	<i>\$</i> 900t9 (SKK400)
Case-2	-10m	-	5.5	0.16	<i>\$</i> 900t14 (SKK490)	<i>\$</i> 900t14 (SKK400)
Case-3	-13m	-	5.0	0.17	¢1200t12 (SKK490)	¢1200t12 (SKK400)
Case-4	-13m	-	6.3	0.15	¢1200t18 (SKK490)	¢1200t18 (SKK400)
Case-5	-13m	あり	4.4	0.45	¢1200t12 (SKK490)	<i>φ</i> 1200t12 (SKK400)
Case-6	-13m	あり	5.5	0.33	¢1200t18 (SKK490)	¢1200t18 (SKK400)

表-2 従来法と提案法による鋼管杭諸元

		従来法(C	ase-1)		従来法(Case-2)		
		上杭(海面上) 上杭		下杭	上杭(海面上) 上杭		下杭
外径, 板厚	mm	\$ 900t9			\$ 900t14		
径厚比D/t		100.0		100.0	64.3		64.3
降伏応力	N/mm ²	315		235	315		235
全塑性モーメント	kNm	2.25×10^{3}		1.68×10^{3}	3.46×10^{3}		2.58×10^{3}
		提案法(Case-1)			提案法(Case-2)		
		上杭 (海面上)	上杭	下杭	上杭 (海面上)	上杭	下杭
外径, 板厚	mm	\$ 900t9		\$ 900t9	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$		\$\$ 900t12
降伏応力※	N/mm ²	288		288	297		219
全塑性モーメント	kNm	2.06×10^{3}		2.06×10^{3}	3.27×10^{3}		2.07×10^{3}
細長比 <i>l/r</i>		53.9		53.9	55.6		55.3
円形保持条件		保持	非保持	非保持	保持	非保持	非保持
軸力依存のべき数n		0.95	0.90	0.90	1.19	1.08	1.07
塑性率μ		1.93	1.32	1.32	2.98	2.51	2.12

		従来法(C	ase-3)(Case-5)	従来法(Case-4)(Case-6)			
		上杭(海面上) 上杭		下杭	上杭(海面上) 上杭		下杭	
外径,板厚	mm	ϕ	1200t1	2	ø 1200t1		8	
径厚比D/t			100.0	100.0		66.7	66.7	
降伏応力	N/mm ²	315		235	315		235	
全塑性モーメント	kNm	5.34×10^{3}		3.98×10^{3}	7.92×10^{3}		5.91×10^{3}	
		提案法(Case-3)			提案法(Case-4)			
		上杭 (海面上)	上杭	下杭	上杭 (海面上)	上杭	下杭	
外径,板厚	mm	\$\$\phi_1200t12\$		\$\$\phi\$ 1200t12	\$\$\phi_1200t18\$		\$\$\phi 1200t17\$	
降伏応力※	N/mm ²	288		215	297		219	
全塑性モーメント	kNm	4.88×10^{3}		3.64×10^{3}	7.46×10^{3}		5.24×10^{3}	
細長比 <i>l/r</i>		49.8		49.8	51.2		50.9	
円形保持条件		保持	非保持	非保持	保持	非保持	非保持	
軸力依存のべき数n		0.98	0.93	1.08	1.06	0.97	1.11	
塑性率μ		2.02	1.34	1.56	2.62	2.19	2.38	
		提案法(Case-5)			提案法(Case-6)			
		上杭 (海面上)	上杭	下杭	上杭 (海面上)	上杭	下杭	
外径,板厚	mm	\$\$\phi_1200t12\$		\$\$\phi\$ 1200t13\$	\$\$\phi 1200t18\$		\$\$\phi\$ 1200t18\$	
降伏応力※	N/mm ²		288	289		297	219	
全塑性モーメント	kNm	4.88×10^{3}		5.30×10 ³	7.46×10^{3}		5.56×10 ³	
細長比 <i>l/r</i>		49.8		50.00	51.2		51.2	
円形保持条件		保持	非保持	非保持	保持	非保持	非保持	
軸力依存のべき数n		0.98	0.93	0.94	1.06	0.97	0.97	
塑性率μ		2.02	1.34	1.49	2.62	2.19	2.19	