# 低温環境下におけるゴム支承の温度依存性に関する実験的研究

Experimental of about the temperature dependency of rubber bearing under the low temperature environment

| 北見工業大学 | 学生会員 | 〇入江 | 駿亮 | 住友理工株式会社 | 正会員 | 中村  | 保之 |
|--------|------|-----|----|----------|-----|-----|----|
| 北見工業大学 | 正会員  | 齊藤  | 剛彦 | 北見工業大学   | 正会員 | 宮森  | 保紀 |
| 北見工業大学 | 正会員  | 山崎  | 智之 | 住友理工株式会社 | 正会員 | 竹ノ内 | 浩祐 |

## 1. はじめに

積層ゴムを用いた免震支承は橋梁の耐震性能を向上 させる有力な選択肢の一つであるが,免震ゴム支承に 使用されるゴム材料の剛性やせん断特性には温度依存 性があり,特に高減衰ゴム支承は天然積層ゴム支承 (NR)と比べると温度依存性が大きいことが知られてい る<sup>1)</sup>.このため,寒冷地域でゴム支承を用いる場合には, 架橋地域の温度影響に対する性能が評価された材料を 用いる必要がある<sup>2)</sup>.

また、支承の選定では、架橋地点の外気温に対応し た最低支承温度における、支承の特性を把握すること が望ましい.この支承の特性を確認するためには、ゴ ム支承供試体に対する載荷試験が行われるが、低温環 境下で載荷試験が実施できる設備は限られている.

著者らは、-30℃の低温室に設置していたアクチュエ ータの動的載荷能力を50kNから200kNに変更した低温 載荷装置を整備した.これにより、従来よりも供試体 の寸法を大きくした載荷試験を行うことが可能になっ た.そこで、本研究ではこの装置を用いて現在開発中 の高減衰ゴム支承 HDReX、従来型の高減衰ゴム支承 HDR-S、分散ゴム支承 NR に対して、それらの温度依存 性と寸法効果を確認する繰り返し載荷試験を行った.

#### 2. 試験概要

載荷試験は文献 3)の方法に準じて,北見工業大学社 会連携推進センターの低温室にある載荷装置(写真-1, 図-1)で実施した.

温度依存確認試験に用いる供試体は,住友理工(株) 製 HDReX, HDR-S, NR の3種類でスケール効果確認 試験は HDReX, NR の2種類を使用する.供試体諸元 を表-1 に示す.試験条件として,温度は 23°C,-10°C, -20°C,-30°C(±1°C)の4つとし,加振方法は振動数 0.5Hz の sin 波で完全両振り,繰り返し回数 11回(NR のみ4 回)で行った.また,せん断ひずみは 175%とし,面圧は 6MPa(スケール効果確認試験は 3MPa)とした.また,履 歴補正は 23°Cで専用の供試体を4回加振し近似関数の 係数を求め,補正を行う.試験パターンは全 120 パタ ーンでこれらに対応して 45 体の供試体を用いた.

温度依存性の評価方法として,試験より得られた変 位-荷重の履歴特性から等価剛性,等価減衰定数を算 出する.求め方は文献4)の方法に準じる.

#### 試験結果と考察

試験結果の一例として 23℃,-30℃におけるせん断弾 性係数 G8の各ゴム供試体の履歴特性を図-2~7に示す. 履歴特性の形状について,NR は図-2,3 より 23℃よ

りも-30℃におけるエネルギー吸収量が大きい. 天然ゴ ムは常温ではエネルギー吸収量がほとんどないが低温 キーワード ゴム支承,繰り返し載荷試験,温度依存性

写真-1 載荷装置



図-1 載荷装置の構成

表-1 供試体諸元

|       | サム断        | 亚西                            | ゴム厚        |          |  |
|-------|------------|-------------------------------|------------|----------|--|
| 種類    | 弹性係数       | 一面<br>寸法                      | te<br>(mm) | n<br>(層) |  |
| HDReX | G8, 10, 12 | □ 120mm<br>□ 170mm<br>□ 240mm | 7          | 3        |  |
| HDR-S | G8, 12     | □170mm                        | 7          | 3        |  |
| NR    | G8, 12     | □ 120mm<br>□ 170mm<br>□ 240mm | 7          | 3        |  |

では一定のエネルギー吸収が行われることが分かる. HDR-S では、低温になることで1波目の最大荷重が約4倍になるとともに、2波目以降の荷重も大きくなっている. HDReX について図-5、7を比較すると HDR-S と同様の傾向だが、低温時の1波目および2波目以降の荷重は HDR-S より小さくなっている.

次に図-8,9にNR,図-10,11にHDR-S,図-12,13 にHDReXの等価剛性と等価減衰定数の23℃に対する 変化率を示す.併せて文献5)の提案式を曲線で示す.

図-8,9のNRにおいては、供試体を-30℃の試験室内 に静置する期間によって等価剛性が大きく異なったた め、静置期間を19日間、4日間、-30℃到達直後と変化 させて試験を行った.なお、常温の測定室から-30℃の 試験室に供試体を移して供試体内部の温度が-30℃に達

連絡先 〒090-8507 北海道北見市公園町 165 番地 北見工業大学工学部社会環境工学科 TEL:0157-26-9472 (宮森保紀)

40

40

40



20

図-6 HDReX\_G8 履歴特性 図-7 HDReX\_G8 履歴特性

するまで約5時間であった.NRにおいて-30℃での静 置期間が長いと等価剛性がかなり大きくなっているが, これはゴムの結晶化 <sup>6</sup>が原因であると考えられ,静置期 間を短くすると文献 5)と同等になった.

HDR-S は NR と比べると等価剛性の変化率が大きく なっている.-10℃から変化率が大きくなることから HDR-S は低温になるとゴムが硬化しやすいと考える.

HDReX についても他の供試体と同様に温度が下がる につれて剛性が増加するが,-30℃での増加率が HDR-S より小さく,結晶化が進んでいない NR と同等である.

図-8, 10, 12から,各供試体のG8で23℃と-30℃の 変化率は, NR は 164%, HDR-S は 221%, HDReX は 174% となった.このことから,温度依存性は HDR-S が一番 高く、次いで HDReX、一番低いのは NR という結果に なった.また、せん断弾性係数による各供試体の等価 剛性の変化率の傾向は大きな差がない.

等価減衰定数は、図-9 より NR は低温になると大き くなり、図-11,13から HDR-S と HDReX は変化がない か, 少し大きくなっている. これは NR はもともとエネ ルギー吸収量が小さいため HDR-S, HDReX に比べ変化 率が大きいと考えられる.また、せん断弾性係数によ る等価減衰定数の変化率の傾向は変わらない.

平面寸法の効果について、図-14から等価剛性に変化 率の傾向は供試体の種類によらず同等だったが、図-15 から等価減衰定数はばらつきがあった.

### 4. まとめ

3種類の免震ゴム支承に対し、試験室ごと低温にする ことによって供試体の内部温度を低温に保った状態で, 載荷試験を行った.その結果得られた履歴特性,等価



図-14 スケール効果試験 の等価剛性



剛性, 等価減衰定数から各供試体を比較すると, 温度 依存性は HDR-S が一番高く, HDReX と NR は同じか, HDReX の方が若干高くなることがわかった.また、低 温ではエネルギー吸収量がどの供試体も大きくなるこ とが確認できた.特に NR は増加率が大きい. さらに, 長期間-30℃に静置した NR の結晶化など低温下特有の 現象も確認した.

### 参考文献

1) 日本ゴム協会 免震用積層ゴム委員会:設計者のための免 震用積層ゴムハンドブック,2000.2) 北海道土木技術会:北 海道における鋼道路橋の設計および施工指針[第1編]設計・ 施工編, 2012. 3) 北海道土木技術会:北海道における鋼道路 橋の設計および施工指針[第3編]資料編,2012.4) 日本道路 協会:道路橋示方書·同解説 V耐震設計編,丸善,2012. 5) 北海道土木技術会:北海道における鋼道路橋の設計および 施工指針の改定 (2014 年 10 月 22 日), http://www.koudourokyo.net/news/403/(2017年4月2日閲覧). 6) 日本道路協会:道路橋支承便覧, 丸善, 2004.