鉄筋コンクリート充填鋼管柱の静載荷実験に関する弾塑性有限要素解析

室蘭工業大学大学院 学生会員 ○堅田 恭輔 室蘭工業大学大学院 正会員 小室 雅人 室蘭工業大学大学院 正会員 栗橋 祐介 釧路工業高等専門学校 F会員 岸 徳光

1. はじめに

本論文では,鉄筋コンクリート充填鋼管柱の静的耐荷性 状に関する基礎的な資料を得ることを目的に,静的3点 曲げ載荷実験を実施した.さらに,同実験を対象に弾塑 性有限要素解析を実施し,実験結果との比較によって解 析手法の妥当性を検討した.

2. 数值解析概要

2.1 試験体概要

図1には、実験に用いた試験体の形状寸法を示している. 試験体は、外径267.4 mm、板厚12.7 mmの鋼管(STK400) を用い、内部にPC鋼棒(SBPR)を9本配筋した鉄筋コン クリート充填鋼管柱であり、全長は5.6 m(純スパンは4 m)である.実験は、静的3点曲げ載荷とし、柱の支点治具 は回転を許容するピン支持に近い構造となっている.載 荷は容量1,000 kNの油圧ジャッキと専用の載荷治具を用 いて荷重制御で行った.なお、ジャッキの可動域が狭い ために、盛り換えを行い載荷実験を実施した.

測定項目は, ロードセルによる載荷荷重, 非接触型レー

ザ式変位計によるスパン中央部の鉛直変位,および試験体 に貼付したひずみゲージによる各点のひずみである.本 研究では,同鋼管柱の静的耐荷性状に関する基礎的な資 料を得るために,図2に示すように多数のひずみゲージ を貼付している.具体的には,底面の軸方向に23点,側 面(中立軸)の軸方向に13点,さらに載荷点近傍周方向に 等間隔で13箇所に軸および周方向に26点,計60点であ る.なお,載荷点近傍に関しては,載荷治具を避ける位 置にひずみゲージを貼付している.

2.2 解析モデル

図3には、本解析で用いた試験体および断面の要素分割 状況を示している。

鉄筋には埋め込み鉄筋要素を用い、その他の要素には8 節点固体要素を用いた.コンクリートと鋼管要素間には 完全付着を仮定している.なお、支点治具と鋼管の接触 面での摩擦を考慮するために、両者の間に厚さ零のイン ターフェイス要素を導入した.鋼管の境界条件は、実験

図5 荷重-変位関係

キーワード:鉄筋コンクリート充填鋼管柱,静載荷実験,弾塑性有限要素解析,埋め込み鉄筋 連絡先:〒050-8585 室蘭工業大学大学院 くらし環境系領域 社会基盤ユニット TEL/FAX:0143-46-5228

図6 ひずみ分布図

と同様となるように回転を許容するように設定した.また,載荷荷重は,図3に示す載荷治具に鉛直方向変位を 変位制御方式によって与えることとした.

2.3 材料構成則

図4(a)には、鋼管および鉄筋に使用した応力–ひずみ関係を示している。降伏後の塑性硬化を考慮したバイリニア型の構成則モデルとし、塑性硬化係数H'は弾性係数 E_s の 0.01%と仮定した。降伏の判定には、von Misesの降伏条件に従うこととした。降伏応力 f_y 、弾性係数 E_s およびポアソン比 v_s は**表**1に示す公称値を用いた。

図4(b)には、コンクリートに関する応力–ひずみ関係を示している。 圧縮強度は $f'_c = 50$ MPa とし、降伏の判定には Drucker-Prager の降伏条件を用い、内部摩擦角は 30° と設定した。引張側に関しては、コンクリート標準示方 書に即して引張軟化曲線を適用した。

なお、支点治具、載荷治具に関しては、弾性体(鋼材, $E_s = 200$ GPa、 $v_s = 0.3$)と仮定している。支点治具および 載荷治具と鋼管間の摩擦係数は事前解析により 0.577 と設 定した。

3. 数値解析結果および考察

図5には、載荷荷重とスパン中央点変位の関係につい て、実験結果と解析結果を比較して示している.なお、実 験結果は前述の通り油圧ジャッキのストロークの制約か ら盛り替えを行うため、除荷と再載荷を繰り返し行って いる.一方、数値解析は、変位230mm程度で解が収束せ ずに計算を終了した.

図より,解析結果と実験結果を比較すると,変位 25 mm 以降では,両者に若干の差異がみられるものの,初期剛 性は非常によく一致しており,解析結果は実験結果を大 略再現しているものと判断される.両者の差異の要因と しては,本解析において 1)鋼管の降伏応力を公称値,充 填コンクリートの圧縮強度を設計基準強度で与えている こと,2) 鋼管とコンクリートを完全付着と仮定している こと等が挙げられる.

図6には,底面および側面軸方向ひずみについて,実験結果と解析結果を比較して示している.なお,着目点は 図5における a 点(弾性域), b 点(降伏後,変位 50 mm) および c 点(変位 150 mm)である.

図6(a)に示す底面ひずみに着目すると,弾性域では, 支点部から載荷点付近に向けてほぼ線形にひずみが増大 していることが分かる.また,解析結果のひずみ分布は 実験結果とよく一致している.

次に,変位 50 mm の b 点を見ると,載荷点近傍で 0.6 %を超えるひずみが発生しており,引張側となる底面で は広範囲で降伏していることが分かる.変位が増大した c 点では,さらに降伏領域が広がっている.

図6 (b) に示す側面方向のひずみ分布に着目すると,弾 性域では解析および実験結果のひずみはほぼ零を示して おり,中立軸の移動は見られない.その後,変位が増大 するとともに,スパン中央部近傍のひずみが引張側に増 大していることから,中立軸が上側に移動している様子 が窺える.両者を比較すると,若干の差異が見られるも のの,定性的にはよく対応しているものと考えられる.

- 4. まとめ
 - 鉄筋コンクリート充填鋼管柱の静載荷挙動において、 埋め込み鉄筋やコンクリート要素に Drucker-Prager の 降伏条件を適用することにより、実験結果の初期勾 配や降伏による剛性勾配の変化を含めた荷重-変位関 係をほぼ適切に再現可能である。
 - 2) 実験結果のひずみ分布も,提案の解析法を適用する ことにより,概ね再現可能である.