PC 鋼線破断時における弾性波の捕捉と桁挙動の把握

福井大学	学生会員	〇金子	宏隆	正会員	鈴木	啓悟
東京工業大学	Porjan Tuttipongsawat		正会員	佐々7	卞栄一	
西日本高速道路(株)				正会員	福田	雅人
NEXCO 西日本コンサルタンツ(株)				正会員	伊川	嘉昭
(株)日本ピーエス		天谷	公彦	正会員	濵岡	弘二
オムロンソーシアルソリューションズ(株)	正会員	用黒	卓也	正会員	高瀬	和男

1. 研究の背景と目的

我が国では高度経済成長期以降に建設された土木構 造物の多くにプレストレストコンクリート(PC)構造が 用いられてきた.近年,それらの土木構造物において, 疲労や塩害等による経年劣化や建設当時の施工不良に よる内部での PC 鋼材の破断・損傷が問題となってい る.しかしながら,それらを外観により判断することは 困難である.そこで,本研究では実際に PC 枕木を PC 桁に見立て,段階的に破壊し,それぞれの条件での挙動 を変位,ひずみ,弾性波といった観点から取得し PC 鋼 線破断時における挙動の把握を目的とする.

2. FEM 解析

本研究では、実験に PC 枕木を用いるが耐荷力の予測 がつかないため、非線形静的解析により載荷荷重の検 討を行う.解析に用いたモデルの概要を図1に示す.モ デル化は試験体中央の断面を基に行う.コンクリート 躯体を8節点連続体要素、内部に配置されている PC 鋼 材をリバー要素によりモデル化する.要素分割はコン クリート躯体を一辺10mmの立方体、PC 鋼材を10mm 毎とする.プレストレスを表現する方法として、予めリ バー要素に初期応力を与える.載荷条件については3点 載荷とし、支点間距離は1900mmとする.コンクリート および PC 鋼材の材料特性を表1に示す.また、図2に 弾塑性構成則を示す.PC 鋼材にはバイリニア型の等方 硬化則、コンクリートには金属などの材料に用いられ る塑性論をコンクリート材料にも適用した Concrete Damaged Plasticity Model を用いる.要素寸法に依存した 局所化の問題を避けるため,破壊エネルギーG_fによっ てひび割れ発生後の引張応力を変位で定義する.解析ス テップは 1 段階目でプレストレスの導入と死荷重の載 荷,2段階目でモデル中央への載荷を行う.プレストレ スの導入値は初期緊張力の1倍,0.8倍,0.65倍の3パ ターンとする.図3に解析から得た荷重-変位曲線を 示す.ここで,変位は1段階目の反り上がり後を原点と する.反り上がり後の変位は1倍で1.04mm,0.8倍で 0.82mm,0.65倍で0.64mmであった.結果から,38kN をひび割れ荷重と想定し,実験を行うこととした.

3. PC 破断基礎実験

実験で用いたプレテンション式 PC 枕木の概要を図4 に示す. PC 鋼材として,2.9mm×3本のより線が12本 設置されており,それぞれに初期緊張力として 31.8kN が導入されている.試験体は健全試験体と破断試験体の 2種類とする.本研究における破断試験体とは図5に示 すような部分的ハツリによりPC鋼材を露出させた試験 体のことをいう.実験は健全試験体および破断試験体2 体の計3体で行う.試験体にはA~Cの3断面を設定し,

-0.002

3

0

σ(MPa)

σ(MPa)

キーワード プレストレストコンクリート,鋼線破断,曲げ挙動,弾性波,有限要素法 連絡先 〒910-8507 福井県福井市文京 3-9-1 国立大学法人 福井大学 TEL 0776-27-8596

-683-

それぞれの断面で変位とひずみの計測を行う.併せて, 複数の位置から弾性波の記録も行う.変位計は鉛直方 向に対して設置し,ひずみゲージは図5のように長手 方向に取り付ける.載荷方法は図4に示すように3点 載荷とする.載荷荷重は,解析による想定ひび割れ荷 重の一割減である $P_2=34.2$ kNを基準とする.また,短 スパン橋と長スパン橋を想定した死荷重の係数を設 け,それぞれ0.5,0.75とする.載荷は図6の順序で行 う.破断試験体では,各 PC 鋼線を切断する前後に 34.2kN まで荷重をかけ,除荷をすることで PC 鋼線が 破断した際の影響を確かめる.また,PC 鋼線は死荷重 状態でグラインダにより人工的に切断する.B④のみ 荷重を高めていき,載荷による破断を試みる.

4. 結果

図7に実験結果のグラフを示す.健全試験体の載荷 試験では、44.5kN近くで中央下縁に初めて曲げひび割 れが発生し、その後68kNまでひび割れが進展し続け、 中立軸まで達した後に約78kNで上縁部が圧縮破壊に より終局に至った.解析と比較した際には、0.8倍のモ デルと概ね一致する.破断試験体①では、PC鋼線B④ の載荷による破断を試みたが、PC鋼線が破断する前に コンクリート上縁部が圧縮破壊するという結果となっ た.そこで、破断試験体②ではPC鋼線B②を切断した 後、予めB④の素線1本毎に切り欠きを施して載荷を 行った.その結果、PC鋼線は載荷荷重を高めていくと 共に素線1本毎に破断した.破断に至った荷重は、そ

れぞれ素線1本目が31kN,2本目が38kN,3本目が 43kNであった.また,素線1本目が破断する直前から コンクリート下縁部にひび割れが発生し,2本目が破 断する前には新たなひび割れの発生と共に既存のひび 割れが上縁部付近まで進展し,3本目が破断した際に は割れ目が開いた状態となり破壊に至った.

破断試験体の荷重-変位関係から,載荷点断面であ る B 断面で PC 鋼線が破断した後には変位が大きくな るが,A および C 断面の A①,C①が破断した後には 大きな影響が見られないことがわかる.圧電素子を用 いた弾性波の計測においては,試験体下面に設置した 位置の異なる箇所で取得した波形の時間差を相互相関 関数で求め,波速を算出したところ,既知のコンクリ ートの縦波と概ね一致した.ひずみに関しては,各断 面のひずみの変化から PC 鋼線が破断した際には破断 断面内で応力の分配が行われることがわかった.

5. 結論

以下に本研究で得た知見をまとめる.

- (1) PC 鋼線の破断時には,破断箇所近傍においてごく 局所的な変形は起こるが,全体挙動への影響は少 ない.ただし,曲げ応力が卓越している領域で破 断が発生した場合ひび割れが引張領域において誘 発され,剛性の低下が起こる.
- (2) PC 鋼線が 1/3 破断した場合においても、上縁部の 圧壊により終局を迎えた.
- (3) PC 鋼線破断時に生じる弾性波は主に縦波である.
- (4) PC 鋼線破断時に生じる弾性波は桁全体に伝搬す る傾向があり,この波の捕捉が破断検知に向いて いることが示唆された.
- (5) PC 鋼線が破断した際には破断断面内で応力の再 分配が行われる.