微地形情報を考慮した安定化有限要素法による雪崩解析

○東北大学大学院工学研究科	学生会員	山口 裕矢
東北大学大学院工学研究科	正会員	高瀬 慎介
東北大学災害科学国際研究所	正会員	森口 周二
東北大学災害科学国際研究所	正会員	寺田 賢二郎

1. はじめに

国内における従来の雪崩予測手法は,経験則に基づく 「見通し角法」や,深さ方向に静水圧近似を仮定する2次 元解析が主であるが,これらは3次元性に富んだ複雑な地 形には適用できないという問題がある.本研究では,非構 造格子を用いた安定化有限要素法を用いることによって複 雑な地形情報を取り入れ,3次元における雪崩の詳細な挙 動を表現することを目的とする.本手法の検証のために, 模型実験の再現解析を通してパラメータ調査を行った後に, 実際に発生した雪崩の再現解析を実施し,解析手法の有効 性を調べた.

2. 解析手法

空気と雪崩の二相流解析を界面捕捉法のひとつである Phase-Field 法によって行う.固定メッシュを用いて,界面 関数 *φP* の移流を保存形に修正された Allen-Cahn 方程式に よって計算することで雪崩の自由表面を表現する.

$$\frac{\partial \phi_P}{\partial t} + \mathbf{u} \cdot \nabla \phi_P = \frac{\epsilon}{\delta_P} \nabla \cdot (\delta_P (\nabla \phi_P) - F_a) \tag{1}$$

$$F_a = \phi_P (1 - \phi_P) \frac{\phi_P}{|\nabla \phi_P|} \tag{2}$$

ここに、u は流速、 ϵ は易動度、 δ_P は界面幅を表す.流体の基礎方程式は Navier-Storks 方程式および連続式を用い、 雪の流動特性を表現するために雪をビンガム流体として仮定し、時間・空間的に変化する粘性係数 η を与える.ビンガム流体はせん断応力 τ がせん断強度 τ_0 を越えるまでは流動が起こらず、 τ_0 を越えると応力の超過分に比例するせん断速度 $\dot{\gamma}$ が生じる. τ_0 にクーロンの破壊規準を採用することで、 η は次式により表される.

$$\eta(\dot{\gamma}) = \eta_0 + \frac{c + p \tan \phi}{\dot{\gamma}} \tag{3}$$

ここに、 η_0 は最小粘性係数、cは粘着力、pは液体の圧力、 ϕ は内部摩擦角である.また、上式のせん断速度はテンソルの第二不変量を用いる.有限要素方程式の導出はSUPG/PSPG法により、流速 \mathbf{u} 、圧力pにそれぞれ1次の四面体要素を適用する.

3. 模型実験の再現解析

既往の研究で実施された模型実験¹⁾の再現解析を行い, 雪崩の先端の到達距離および停止後の堆積形状について比 較することでパラメータの影響を検討した.数値計算で使 用するモデルは図-1に示すように,実験に使用した模型の

キーワード:雪崩 ビンガム流体 安定化有限要素法

〒 980-0845 仙台市青葉区荒巻字青葉 468-1, TEL 022-752-2132, FAX 022-752-2133

図-2 実験結果比較

ハーフスケールモデルを用いる.境界条件には底面及び側面にノンスリップ,その他の面にはスリップ条件を与える.以下の Case1~3 では内部摩擦角 ϕ を変化させた影響について調査した.

3.1 Case1: 内部摩擦角の影響

既往の研究を参考に φを 20°, 30°, 40° に設定した Casel-20~40 の結果を図-2 に示す.図-3 より到達距離は φ が小 さいほど実験値に近づくが,全テストケースで実験値より も小さい傾向にある.図-4 に示す堆積形状は 30° が実験値 に非常に近いことが分かる.これより,雪崩全体の性質と しては 30° が妥当であり,移動速度が遅くなるのは底面境 界のノンスリップ条件の影響が過剰なためであると判断し た.雪崩の形状は保持したまま移動速度を改善するために は,底面摩擦の効果を考慮する必要があると考えられる.

3.2 Case2:低粘性層を導入した数値計算

有限要素法による流体解析では,底面境界処理にはノン スリップ条件を用いることが一般的であり,有限要素方程 式に境界処理を直接組み込む手法も存在するが,計算方法 が複雑になる.そこで,本研究では液相を底面からの距離 関数を用いて二相に分割し,パラメータを変化させること によって,底面付近の粘性を小さくし,底面摩擦の挙動を 再現することを試みた. ϕ の値を上部の液相1と底面側の 液相2でそれぞれ30°,10°とした Case2の解析結果を図-2 に示す.図-3,図-4より,移動速度は速くなったが,勾配 が小さくなっても流れが止まらず,壁に衝突しており,不 適切な結果となっている.実験値は勾配が小さくなると急 激に移動速度が小さくなるため,速度に対して敏感な粘性 パラメータを与える必要があることが分かる.

3.3 Case3: 速度依存性パラメータを導入した数値計算

速度によって急激に粘性が変化する挙動を再現すること を目的とし, Case2 における液相 2 の内部摩擦角 ϕ_2 を次

図-5 実際の雪崩の状況(左)と再現解析結果(右) 式より ŷの関数として表した.

$$\phi_2 = \frac{\phi_1 - \phi_{\min}}{\pi} \arctan\left(-\dot{\gamma} + \dot{\gamma}_p\right) + \frac{1}{2}(\phi_1 + \phi_{\min})$$
(4)

ここに、 $\dot{\gamma}_p$ はパラメータであり、 ϕ_2 は $\dot{\gamma}$ が $\dot{\gamma}_p$ を下回ると ϕ_1 に漸近し、上回ると ϕ_{\min} に漸近する. ϕ_1, ϕ_{\min} をそれぞ れ 30°, 10°とし、 $\dot{\gamma}_p$ は解析結果をもと 250s⁻¹とした Case3 を用いる.図-3、図-4より、堆積形状は大きく崩れず、流 れが止まらない挙動が改善されていることが分かる.よっ て、全テストケースの中で、雪崩全体の挙動としては最も 実験と近い傾向が得られたと考えられる.

4. 実例の再現解析

模型実験の結果および既往の数値解析²⁾を参考に,実際 の雪崩の再現解析を行った.まず防護壁を設置しない状態 において,模型実験の解析と同様にして低粘性層,速度依 存パラメータを用いて計算を行った結果,模型実験のそれ と同様の傾向が確認された.次に,防護壁を設置した条件 の数値計算を行い,雪崩発生時の再現度を検証した.図-5 に示す実際の状況と解析結果の比較より,雪崩が防護壁を 乗り越えて道路全幅に渡って堆積しており,実際の状況と 近い結果が得られたことから,実地形情報を用いた解析に おいても,雪崩の挙動として妥当な再現結果を得られるこ とが確認された.

5. おわりに

提案する手法では限られたパラメータ設定によりある程 度の精度を持った結果が得られることが確認できた.また, 実際の雪崩は流動状態によって底面摩擦の影響が変化する と考えられ,今回のテストケースでは速度依存性パラメー タを用いたケースによってその特性が表現された.しかし, 現状ではパラメータ $\dot{\gamma}_p$ の設定が恣意的であるため,実現 象により決定したパラメータを与えることで,精度が改善 されるものと考える.

参考文献

- Oda, K., Moriguchi, S., Kamiishi, I., Yashima, A., Sawada, K., Sato, A. : Simulation of a snow avalanche model test using computational fluid dynamics, *Annals of Glaciology*, Vol.52-58, pp.57-64, 2011.
- 森口周二, 沢田和秀, 上石勲, 小田憲一: 非 Newton 流体モデ ルによる雪崩シミュレーション, 計算力学講演会講演論文集, Vol.2015.25, pp.24-26, 2012.