材料表面のき裂による分調波発生現象の 2次元数値シミュレーション

1. はじめに

構造物の維持管理の観点から,初期段階のきずであると 考えられる微小き裂を検出・計測することは重要である.し かしながら,これらのき裂は多くの場合,全体,もしくは先 端部分が閉口していることが知られている.このような閉 口き裂の検出・計測に対して,母材ときずの音響インピー ダンス差異を用いる通常の線形超音波法の適用は難しい. それは,閉口き裂が入射超音波の大部分を透過させてしま うためである.以上のような理由から,閉口き裂の検出・ 計測に対して,接触音響非線形性 (CAN: Contact Acoustic Nonlinearity)¹⁾ による非線形超音波発生現象をベースした 非線形超音波法が有効な検査手法となることが期待されて いる.

非線形超音波法では、きずの非線形性によって受信波に 含まれる高調波・分調波を周波数解析により抽出し、きずの 位置推定や深さ計測を行う.ここで、高調波、及び分調波は それぞれ入射波の中心周波数の整数倍、及び整数分の一の 周波数成分を有する波である.高調波の発生メカニズムは、 30年以上前にその現象が提唱されてから²⁾、き裂面での繰 り返し打撃やせん断応力の変化による説明がなされ、概ね 明らかにされたと考えられる³⁾.しかしながら、分調波に関 しては、その発生は確認されているものの^{1,4)}、発生メカニ ズムは未だほとんど解明されておらず、さらなる理論的な アプローチが必要である.そのため、本研究では分調波発生 現象に着目し、数値シミュレーションを実行する.

CAN による分調波発生現象の数値シミュレーションは 先行研究として, 差分法⁵⁾, 有限要素法⁶⁾ による報告例が あるが, これらの数値シミュレーションでは非常に薄い剥 離部分が接触を有する場合に限定されている. 一方, 著者ら は, 無限領域中の曲線き裂, 及び閉口配置された二つのき裂 に対する 2 次元数値シミュレーションを実行し, 分調波発 生現象を再現した⁷⁾. しかしながら, 対象とした形状・配置 のき裂が実際に存在するかどうかといった問題は考慮して いない. そのため, 本研究では, 計測実験によって分調波発 生現象が確認されている材料表面のき裂⁴⁾ に対して数値シ ミュレーションを実行し, その非線形振動現象について考 察する.

非線形解析には,き裂のモデル化,及びき裂面での境界条

○東京理科大学	正会員	丸山泰蔵
群馬大学大学院	正会員	斎藤隆泰
東京工業大学大学院	正会員	廣瀬壮一

件の取り扱いが精度良く容易に行える時間領域境界要素法 を用いる.また,分調波が発生したことを明確に判断できる ように比較的長時間の解析を行う.数値解析を安定かつ高 精度に行うため,陰的 Runge-Kutta 法を用いた演算子積分 法 (CQM)を時間方向,Galerkin 法を空間方向の離散化に用 いる.き裂面の接触モデルには,文献⁷⁾と同様のものを用 いる.

2. 解くべき問題及び境界積分方程式

図1に示すように,自由表面 S_s を有する半無限領域 D中にき裂面 $S(=S^+ \cup S^-)$ を有する表面き裂が存在するモデルを考える.ここで,上付き添字の ± は向かい合うそれぞれのき裂面を表している.領域 D は線形,均質な等方性弾性体であると仮定し,き裂面での表面力の連続性を考慮すると,変位 u が満足する支配方程式,及び境界・初期条件は次のように与えられる.

$$c_T^2 \nabla^2 \boldsymbol{u}(\boldsymbol{x}, t) + (c_L^2 - c_T^2) \nabla \nabla \cdot \boldsymbol{u}(\boldsymbol{x}, t) = \ddot{\boldsymbol{u}}(\boldsymbol{x}, t) \quad \boldsymbol{x} \in D$$
(1)

$$\boldsymbol{t}(\boldsymbol{x},t) = \boldsymbol{0} \quad \boldsymbol{x} \in S_s \tag{2}$$

$$t^{+}(x,t) + t^{-}(x,t) = 0 \quad x \in S$$
 (3)

$$[\boldsymbol{u}](\boldsymbol{x},t) \left(\equiv \boldsymbol{u}^+(\boldsymbol{x},t) - \boldsymbol{u}^-(\boldsymbol{x},t)\right) = \boldsymbol{0} \quad \boldsymbol{x} \in \partial S \tag{4}$$

$$\boldsymbol{u}^{\mathrm{sc}}(\boldsymbol{x},0) = \dot{\boldsymbol{u}}^{\mathrm{sc}}(\boldsymbol{x},0) = \boldsymbol{0} \quad \boldsymbol{x} \in D$$
(5)

ここで,上付き添字のscは散乱波を表しており,自由場 u^{free} のき裂による乱れとして定義しており, $u = u^{\text{free}} + u^{\text{sc}}$ である.また, u^{free} はき裂が存在しない場合の解であり,入射波 u^{in} ,及び自由表面による反射波 u^{ref} によって, $u^{\text{free}} = u^{\text{in}} + u^{\text{ref}}$ と表される.tは表面力であり,上付き添字の±は対応する法線方向ベクトル n^{\pm} を表している.[u]はき裂開口変位である.また, c_L , c_T はP波,S波の波速であり,() は時間微分である.式(4)はき裂の縁 ∂S において,開口変位がゼロであることを表しており,式(5)は静止過去の条件

図1 半無限弾性体中の表面き裂による波動散乱問題

Key Words: 非線形超音波法, 接触音響非線形性, 分調波, 時間領域境界要素法 〒 278-8510 千葉県野田市山崎 2641・TEL: 04-7124-1501 (4073)

である.

境界条件 (2), (3), 初期条件 (5), Sommerfeld の放射条件を 考慮すると, 支配方程式 (1) から D における u の積分表現 が導出される. その後, 観測点を領域 D 内から境界 S, S_s 上 に極限移行し, 重み関数 ψ を用い Galerkin 法によって評価 することを考えると, 次の式を解くこととなる ⁸⁾.

$$\int_{S^{+}} \psi(\boldsymbol{x}) \boldsymbol{t}^{+}(\boldsymbol{x}, t) dS_{\boldsymbol{x}} = \int_{S^{+}} \psi(\boldsymbol{x}) \boldsymbol{t}^{\text{free};+}(\boldsymbol{x}, t) dS_{\boldsymbol{x}}$$
$$- \int_{0}^{t} \int_{S_{s} \cup S^{+}} \psi(\boldsymbol{x})$$
$$\times \text{p.f.} \int_{S_{s}} \boldsymbol{W}^{+}(\boldsymbol{x}, \boldsymbol{y}, t - \tau) \cdot \boldsymbol{u}^{\text{sc}}(\boldsymbol{y}, \tau) dS_{\boldsymbol{y}} dS_{\boldsymbol{x}} d\tau$$
$$- \int_{0}^{t} \int_{S_{s} \cup S^{+}} \psi(\boldsymbol{x})$$
$$\times \text{p.f.} \int_{S^{+}} \boldsymbol{W}^{+}(\boldsymbol{x}, \boldsymbol{y}, t - \tau) \cdot [\boldsymbol{u}](\boldsymbol{y}, \tau) dS_{\boldsymbol{y}} dS_{\boldsymbol{x}} d\tau \quad (6)$$

ここで, W は超特異積分核, t^{free} は自由場の表面力であり, p.f. は発散積分の有限部分を表している.

式(6)を離散化し,適切な境界条件によって連立一次方程 式を構成し,数値的に解く.しかしながら,本稿では紙面の 都合上,それらを省略する.

3. 数值解析例

本稿では,分調波発生現象が確認できた場合の一例とし て,図2に示すように,自由表面に対して45°の角度を有す る長さ*a*の表面き裂に対して平面波を入射したときの解析 結果を示す.このとき,入射角は75°とし,中心周波数*f*ⁱⁿ, 振幅*u*₀,15周期の正弦バースト波形を有する平面 P 波を用 いた.材料定数は,ポアソン比0.3,静止摩擦係数0.74,動摩 擦係数0.47 とした.

本研究では、遠方における後方散乱 P 波を受信波として 評価する. 遠方近似された散乱 P 波 u_L^{far} は遠方散乱振幅 Ω_L を用いて次のように表される.

$$u_L^{\text{far}}(\boldsymbol{x},t) \simeq \frac{1}{\sqrt{8\pi x}} \Omega_L\left(\hat{\boldsymbol{x}}, t - \frac{x}{c_L}\right)$$
 (7)

このとき, $x = |\mathbf{x}|$, $\hat{\mathbf{x}} = \mathbf{x}/x$ と定義している.計算パラ メータは入射波の中心波数 $k_T (= 2\pi f^{\text{in}}/c_T)$, き裂の初期開 口変位 u_g を与えるものとし, 本稿の解析例ではそれぞれ $k_T a = 3.5, u_g/u_0 = 0.0$ とした.

 Ω_L の時刻歴波形,及び最大値で正規化されたフーリエス ペクトルを図3に示す.図3(a)より,大小の振幅を交互に繰 り返す典型的な分調波が含まれる波形になり,安定している 様子がわかる.また,図3(b)中の $A_{\frac{1}{2}\omega}/A_{\omega}$ は分調波と基本 周波数に対応するフーリエ振幅の比を表しており, $A_{\frac{1}{2}\omega}/A_{\omega}$ の明確なピークが確認できる.以上より,接触条件を考慮し た材料表面のき裂による弾性波の散乱問題では,特定の条 件下において分調波発生現象が起こることがわかる.

図 3 k_Ta = 3.5, u_g/u₀ = 0.0 のときの (a) 後方散乱 P 波に対す る遠方散乱振幅, (b) 正規化されたフーリエスペクトル

4. おわりに

本稿では,材料表面のき裂による散乱問題に対する境界 積分方程式,及び解析例の一部を示した.き裂の角度や入射 角を変化させた場合の解析結果,及びそれらの考察につい ては当日報告する.

参考文献

- I. Yu. Solodov, N. Krohn, and G. Busse: CAN: an example of nonclassical acoustic nonlinearity in solids, *Ultrasonics*, Vol.40, pp.621–625, 2002.
 O. Buck, W. L. Morris, and J. M. Richardson: Acoustic har-
- O. Buck, W. L. Morris, and J. M. Richardson: Acoustic harmonic generation at unbonded interfaces and fatigue cracks, *Appl. Phys. Lett.*, Vol.33, No.5, pp.371–373, 1978.
 I. Yu. Solodov, D. Doring, and G. Busse: New opportunities for the second secon
- I. Yu. Solodov, D. Doring, and G. Busse: New opportunities for NDT using non-linear interaction of elastic waves with defects, *J. Mech. Eng.*, Vol.57, No.3, pp.169–182, 2011.
- J. Mech. Eng., Vol.57, No.3, pp.169–182, 2011.
 4) K. Yamanaka, T. Mihara, T. and Tsuji: Evaluation of closed cracks by model analysis of subharmonic ultrasound, Jpn. J. Appl. Phys., Vol.43, pp.3082–3087, 2004.
 5) B. Sarens, B. Verstraeten, C. Glorieux, G. Kalogiannakis, and D. V. Usersticht for a factor for extent protein factor.
- B. Sarens, B. Verstraeten, C. Glorieux, G. Kalogiannakis, and D. V. Hemelrijck: Investigation of contact acoustic nonlinearity in delaminations by shearographic imaging, laser doppler vibrometric scanning and finite difference modeling, *IEEE Trans. Ultrason. Ferr.*, Vol.57, No.6, pp.1383–1395, 2010.
 S. Delrue and K. V. D. Abeele: Three-dimensional finite element
- S. Delrue and K. V. D. Abeele: Three-dimensional finite element simulation of closed delaminations in composite materials, *Ultrasonics*, Vol.52, pp.315–324, 2012.
 丸山泰蔵・斎藤隆泰・廣瀬壮一: 接触条件を考慮したき裂によ
- 7) 丸山泰蔵・斎藤隆泰・廣瀬壮一: 接触条件を考慮したき裂による2次元分調波励起シミュレーション, 土木学会論文集 A2(応用力学), Vol.71, No.2, pp.I.299–I.310, 2015.
- 8) 小林昭一編著: 波動解析と境界要素法, 京都大学学術出版会, 2000.