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1. INTRODUCTION: 

In order to maintain the road/railway infrastructure efficiently, the profile along the longitudinal direction need to be 

monitored regularly. While the measurement of profile or vehicle’s absolute displacement is not practical, but the 

acceleration and angular velocity measurements are feasible. Prevalent sensing devices such as smartphones are potentially 

utilized in vehicle body motion measurement. However, the applicability of such measurement for profile estimation is 

not clarified yet. Assuming the measurement of vehicle body acceleration and angular velocity, Saravanan et al. (2016) 

performed an observability analysis on the profile estimation through augmented state space model as well as two other 

formulations extending it. In the two approaches, the second derivative of the profile is included in the state vector along 

with other state variables. While the profile itself is not observable in any formulation, the second derivative of profile was 

shown to be observable.  In this paper, Kalman filter technique is employed for three state space models mentioned above, 

termed as conventional Augmented State Kalman Filter (ASKF) and two extended approaches (a) and (b) for the profile 

estimation. The performances are compared numerically using quarter car (QC) 2-DOF linear vehicle model.  

2. METHODOLOGY: 

The state space model for the continuous time-invariant system is represented as, 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡);  𝑦(𝑡) = 𝐻𝑥(𝑡)               (1) 
where x is the system state vector, u is the input vector, y is the measurement vector, A is the state matrix, B is the input 

matrix and H is the measurement matrix. In conventional ASKF, the input vector is combined with the state vector and 

identified as a part of state vector. The state matrix is redefined by adding the input matrix to the original state matrix and 

increasing the size of the state matrix.  𝑥̃ = [
𝑥
𝑢

]                 (2) 

The measurement matrix is appended by a null matrix because inputs are assumed unmeasured.   

𝐻 = [𝐻 0]                (3) 

The two approaches for the estimation of profile as a part of the state vector were proposed by Saravanan et al (2016). One 

is to include the second derivative of the profile in the state vector along with other state variables. The profile is estimated 

directly from the state vector, however, it has a large low frequency estimation error. A high-pass filter is need to be applied 

for accurate results. The other is to alter state space model by adopting the first derivative of the state vector as new state 

vector. Thus, only the dynamic components are considered while the static components (i.e., displacement) are excluded 

from the state vector. The profile is estimated as the single integration of a state vector component (i.e., the first derivative 

of the profile). The altered state space model is, 

𝑥̈̃(𝑡) = 𝐴𝑥̇̃(𝑡);   𝑦̇(𝑡) = 𝐻𝑥̇̃(𝑡)               (4) 

where 𝑥̇̃ is the new state vector and only the measurement matrix H, is modified while the transition matrix A, is unaltered. 

A QC model (Figure 1) is a well-known model for simulating one-dimensional vehicle suspension performance. The 

dynamic equation of motion is, 

[
𝑚1 0
0 𝑚2

] {
𝑧̈1

𝑧̈2
} + [

𝑐1 −𝑐1

−𝑐1 𝑐1 + 𝑐2
] {

𝑧̇1

𝑧̇2
} + [

𝑘1 −𝑘1

−𝑘1 𝑘1 + 𝑘2
] {

𝑧1

𝑧2
} = {

0
𝑘2𝑢 + 𝑐2𝑢̇

}             (5) 

where m, k, c and z  are the mass, elastic coefficient, damping coefficient and position of vehicle body respectively and u 

is the road profile. 

 
Figure 1. Quarter Car model 

The state vector for conventional ASKF is defined as:     
𝑥̃ = (𝑧1  𝑧̇1  𝑧2  𝑧̇2  𝑢  𝑢̇)𝑇                  (6) 

The observability analysis shows that none of the state 

variables are observable. The proposed two approaches 

are implemented with the following state vectors.  

In approach (a), the state vector is, 

              𝑥̃ = (𝑧1  𝑧̇1  𝑧2  𝑧̇2  𝑢  𝑢̇  𝑢̈)𝑇                            (7) 

In approach (b), the state vector is, 

               𝑥̇̃ = (  𝑧̇1 𝑧1̈ 𝑧̇2 𝑧2 ̈ 𝑢̇  𝑢̈)𝑇                                   (8) 

Thus by measuring acceleration (𝑧̈1) only at the car body, 

the second derivative component of the profile is 

observable even though the system is unobservable. 
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3. VALIDATION OF PROFILE ESTIMATION: 

Based on three formulations, profile estimation is numerically studied employing Kalman filter technique. The vehicle 

parameters (Table 1) for QC model are obtained from Doumiati et al. (2011). Additionally the vehicle is assumed to 

maintain a constant velocity of 40 km/h and simulated distance is 2.4 km. Numerical simulation is incorporated with 

vehicle model errors and various measurement noise levels generated as a random walk driven by Gaussian white noise 

and also initial condition error in the Kalman filter iteration in order to approximately obtain the exact profile. Figure 2 

shows the typical case of simulated profile after using high pass filter with cut off frequency of 0.5 Hz, by incorporating 

noise level of 5% and large vehicle model errors as given in Table 1. The proposed approaches give better results than the 

conventional ASKF. The statistical metrics of root mean square deviation (RMSD) and correlation coefficient (CC) are 

calculated as shown in Figure 3, which indicate that the performance of the proposed approaches (a) and (b) are better than 

the conventional ASKF.  

      Table 1.      Vehicle parameters

 
                 Figure 2. Comparison of profiles 

  
(a) RMSD                                                             (b) CC 

Figure 3. Quantification through statistical metrics 

Figure 3 (a) shows that, the RMSD decreased from 1.38 m to 0.38 m and 0.36 m for approach (a) and approach (b), 

respectively. The correlation increased from 0.58 to 0.93 and 0.94 respectively as shown in Figure 3 (b). Comparatively, 

approach (a) performs better than approach (b) under various conditions though the differences are mostly negligibly small. 

Irrespective of the noise level and vehicle model error, two proposed approaches performs better than conventional ASKF 

method. 

5. CONCLUSION: 

Two approaches which are extension for ASKF for profile estimation are numerically examined with a QC model for its 

better performance comparing with the conventional ASKF. The further studies on different vehicle models are being 

conducted for the effective profile estimation using practical sensors and its installation locations. 
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