アラミド繊維を混入した FFU 切削セグメントの性能確認試験-その2

| 西松建設(株)     | 正会員 | 村上 初央 |
|-------------|-----|-------|
| 積水化学工業(株)   |     | 林健一郎  |
| 西松・戸田・奥村 JV | 正会員 | 北本 正弘 |

### 1. はじめに

硬質発泡ウレタンをガラス長繊維で補強した複合材料である FFU を鉄筋の代替に用いてシールド機による切削を容易にした FFU コンクリートセグメントを開発した.

本文では, FFU コンクリートセグメントの性能確認試験のうち, 単体せん断試験, リング継手せん断試験, セグメント継手支圧試験の概要について報告する.

## 2. 試験結果概要

## 2.1 単体せん断試験

試験は主筋相当の FFU74 (29t×40w) を 4 本, 配力筋相当の FFU74 (14t×40w) を 300mm 間隔 に配置した,幅 750mm,高さ 515mm,長さ 4000mm の実物大供試体を作成し,図-1 に示すように単純支 承の 2 点集中荷重載荷を行なった.

載荷位置~支承間の距離 a は 1.15m, 載荷点間距 離 S=1.2m, せん断スパン比 a/d=2.53(d=0.455m) とした. ただし, 実セグメントと同じ主筋の種類と 断面寸法としたため, せん断スパン比を 2.5 程度と 小さくしても曲げ破壊する試験体である.

FFU 筋材かごの組み立て状況を**写真-1**に,使用材料の物性値を表-1に示す.コンクリートは切削性を考慮して軽量骨材コンクリートを,筋材には曲げ加工の容易な FFU74 を用いた.

試験体の耐力計算は RC コンクリート部材の計算 方法で行なった.

載荷試験は単純支承の2点載荷で,ひび割れ発生 荷重,長期許容荷重,短期許容荷重,設計終局荷重 でのひび割れ幅の測定も実施した.

載荷荷重と試験体中央変位の関係を図-2 に示す. 最終荷重後のひび割れ状況を写真-2 に示す. 最終荷 重は 457kN で短期許容荷重 118kN,設計終局値 218kN (材料係数:1.0) に較べ十分大きな値であっ た.また,短期許容荷重時のひびわれ分散性は高く, 最大ひび割れ幅は 0.15mm で許容値である 0.3mm 以下であった. なお,設計耐力の算定においては, アラミド繊維の効果は考慮していない.



|                                     |                          | コンクリート           | 筋材               |
|-------------------------------------|--------------------------|------------------|------------------|
| 種類                                  |                          | 軽量コンクリート1種       | FFU74            |
| 物性                                  | ヤング率(N/mm <sup>2</sup> ) | 21,000           | 10,000           |
|                                     | 設計強度(N/mm <sup>2</sup> ) | $\sigma ck = 42$ | $\sigma t = 100$ |
| (アラミド短繊維(l=35mm、径 0.5mm)、0.5vol%混入) |                          |                  |                  |

キーワード:切削セグメント, FFU, 単体せん断試験, リング継手せん断試験 連絡先:〒105-8401 東京都港区虎ノ門1-23-1 虎ノ門ヒルズ森タワー10F 西松建設㈱土木設計部 TEL03-3502-73560

-833

# 2.2 リング継手せん断試験

リング継手せん断試験の概要を**写真-3**に示す.3 リングを繋ぎ,真中のセグメントに押し抜き載荷した.ほぞ部分にはシェアストリップを貼り付けた.

(写真・4) シールドジャッキによりシェアストリッ プが潰されることを再現し,かつ継手面の摩擦が実 験に影響することを排除するため,試験手順は,軸 力導入→軸力除荷→両端固定→押し抜き載荷とした. 軸力 1000kN を導入後,除荷し,10kN ピッチで載 荷した.

ズレ量が最大であった継手位置付近の荷重-相対 変位関係を図-3に示す.最大荷重963kN,その時の ズレ量は8mmであった.継手1ケ所当たりの最大 荷重は240kNであり,設計上の発生せん断力の最 大値52kNに較べ十分大きな値である.また,載荷 後の継手面の破壊状況を写真-4に示す.ほぞの凸側 は押し抜ける側の角部のコンクリートに圧壊が,凹 側は押し抜ける側に凹を跨いでひび割れが認められ る.

## 2.3 セグメント継手支圧試験

継手部の支圧によるコンクリートの割裂耐力の確認をするために継手支圧試験を行なった.(写真-5) 試験は荷重偏心量 0mm, 71mm の 2 ケースを行った.載荷した最大荷重時の水平方向のコンクリート ひずみ分布を図-4 に示す(+が引張).設計最大作用 荷重の 1.4 倍の荷重でも割裂,ひび割れはなく,耐 力は十分である.(表-2 参照)



写真-5 継手支圧試験の状況

| 表⁻2 | <b>継</b> 于文 | 止試験の | まと  | ଷ  |
|-----|-------------|------|-----|----|
|     |             |      | 5 5 | ~> |

| 偏心量  | 最大荷重   | 設計軸力   | 設計曲げ M  |
|------|--------|--------|---------|
| 0mm  | 3009kN | 2157kN | _       |
| 71mm | 2403kN | 1640kN | 117kN•m |



写真-3 リング継手せん断試験の状況



#### 3. おわりに

単体せん断試験,リング継手せん断試験,セグメ ント継手支圧試験の結果はいずれも設計要求性能を 満たすものであった.

**謝辞** 本研究は元京都大学小山幸則教授の指導を 頂いたものであり、ここに深く感謝いたします.

### 参考文献

1) 大江郁夫他: アラミド繊維を混入した FFU 切削セグメントの単体曲げ試験,土木学会第71回年次講演会,VI-00,2016.9 投稿中