剥落危険予知のための熱画像処理システムの開発

東京都市大学	教授	正会員	○小西 拓洋
東京都市大学	特別研	开究員	小屋 裕太郎
東京都市大学	教授	正会員	手塚 正道
		東芝	橋谷 誠一

1. 目的

高架橋,トンネルでのコンクリート片剥落は,第3 者被害防止の観点から,重要点検項目の一つとなっ ている.対象部位の打音点検には足場,高所作業車で の近接が必要となるが,近接できない場合や,通常の 巡回点検では,剥落予知に,赤外線サーモグラフィー カメラが一部で利用され始めている.しかし,簡便で はあるが,打音に比べ信頼性が低く,使用範囲は限定 されている.現在,近接困難な箇所の剥落点検に利用 出来る信頼性の高い剥落検知システムの開発を行っ ている.具体的には,熱画像から欠陥の大きさと深さ を同定し,欠陥の危険性を評価することを目標とし たものである.このための熱画像処理システムにつ いて報告する.

2. 剥落危険箇所の見逃しの原因と対処

熱画像による剥落検知は,空隙等が存在する欠陥 部と健全部で生じるコンクリート表面の温度差を検 知して,欠陥の位置を特定するものである.その原理 は,欠陥の表面側のコンクリートの温度変化速度が, 健全部の温度変化速度に比べ速いことから,時間経 過後に温度差が生じることを利用するものである. 熱意画像による剥落検知における見逃しの原因は, ①微小な温度を肉眼では欠陥と識別出来ないこと. ②温度差が出ない状態で点検を行っていること.③ 捉えた温度差の意味を特定出来ないこと、と考える. ①に対しては、熱画像からのノイズ除去と欠陥抽出 の処理を行い、欠陥の検知率を上げるための画像処 理が有効である.②、③については、検査時の温度環 境から、撮影条件を判定する方法、熱画像から欠陥寸 法と深さを評価する手法を提案する.

3. 温度差推定式

健全部と欠陥部の表面温度差ΔTは構造物と外部の 温度差履歴に依存し,一般に温度が急変するほど,欠 陥の検知は容易となるといわれている. この温度 差推定式を(1)式のように欠陥の寸法,かぶりに関係 するfと温度環境による影響gに分離できるとする.

 $\Delta T = f(dw, kbr) \times g(T_e) \tag{1}$

但し、 ΔT :欠陥部と健全部の表面温度差、dw:欠陥の辺長、kbr:かぶり、 $T_e = T_c - T_{ex}$ (健全部温度-外気温)とし、gは現場での計測時点までの外気とコンクリートの温度差により決まると考えられる.g,fを決めるために、欠陥内在試験体(図-1)を用いて、屋外にてg(Te)を変えて、欠陥寸法とかぶりと温度差の関係を1時間毎に計測した.kbr=35mm、dw=200mmの欠陥の温度履歴を図-2に示す.ある温度環境でのdw,kbr, ΔT の関係を図-3に示す.実測データ中にの異常値は補正しスムーズな温度曲面としている.(1)式のg(Te)が規定出来れば、かぶり、寸法より温度

 差を知ることが出来る.これにより,検査時に,発見 すべき欠陥にどの程度の温度差が生じているか推定 出来,無駄な検査を回避出来る.

3. 熱画像からの欠陥寸法, かぶりの推定

熱画像から得られる情報として,欠陥寸法と欠陥 部の表面温度差がある.熱画像は,各画素値が温度を 示すコンターであり,これをグレースケール,あるい は色に変換して温度分布を表示出来る.表示温度範 囲を小さくすることで微小な温度差を強調できるが, ノイズも強調され欠陥抽出が難しくなる.ノイズに は健全部の材料変化,日照,表面の汚れなどによる温 度変化と,装置の電気ノイズなどがある.

健全部との温度差がある部分が欠陥であるが、欠 陥部の表面温度変化が小さくなだらかで、健全部温 度にムラがあると欠陥の判別が難しくなる.この判 別を自動化するため温度差の探索ボックスを動かし、 かつボックスの大きさ変化させて欠陥を背景のノイ ズから抽出する探索アルゴリズムを作成した.本手 法を図-1の試験体に対して適用し検証を行った.試 験体熱画像の欠陥探索状況を示す.探索領域を大き くしながら,形状の変化を調べ,形状決定時を黄色で 表示した.推定結果を表-1に示す.試験体の欠陥を 寸法*かぶりで示している.50mm 欠陥のように,温度 差が微小で,熱画像が不鮮明であると,寸法を大きく 判定し,この結果かぶり誤差も大きくなる.

4. 欠陥深さの検出

欠陥部の温度差は(1)式に示すように、3つのパラ メータで決まることから、温度環境と、欠陥寸法がわ かれば、深さが推定出来る、剥落の危険性は、欠陥の 大きさと深さで予測することが出来る.

5. 実構造物への適用

実構造物の表面温度差は、試験体に比べ複雑である.構造や環境要因による大きな温度変化の上に、欠陥による小さく急峻な温度差の山がのるような状況に対しては、本探索アルゴリズムが役立つと考えられる.図-6,7に実構造物での欠陥抽出画像を示す.

参考文献

・中村ら、赤外線サーモグラフィーによるかぶりコンクリート剥落予測手法、土木学会論文集
E2, V01. 69, 450-461, 2013

