開削トンネルにおける赤外線熱計測によるコンクリートの浮き・剥離手法の検討

(株)保全工学研究所	正会員	〇中山	聡子	東京地下鉄(株)	正会員	川上	幸一
東京地下鉄(株)	正会員	小西	真治	東京地下鉄(株)	正会員	村上	哲哉
清水建設(株)	正会員	久保	昌史	清水建設(株)	正会員	齋藤	健司

1. はじめに

現在筆者らは、地下鉄営業線内において強制加熱不 要の赤外線パッシブ法によるコンクリートの浮き・剥 離調査手法の適用性を検討しており、平成26年度まで に、開削トンネルやシールドトンネルの連続した100 m程度の範囲において検証を行ってきた¹⁾²⁾.

今回,鉄筋コンクリート造の開削トンネル約1kmの 範囲において連続的に撮影した赤外線熱画像及び可視 画像から検出された浮きと,事前に特別全般検査(以 下,特全)で検出された浮きとを比較検討した.

本報ではこれらの検討結果について報告する.

2. 調査概要

(1) 計測範囲

計測範囲は、地下鉄線内駅間のA線、鉄筋コンクリート造開削トンネル、延長1,040mとした.また計測対象部位は、上床及び、側面(下面スラブより2m以上)とした.図-1に計測対象部位を示す.

(2) 調査実施日の決定

過年度までの検討により、コンクリート表面温度が 坑内大気温度より 0.35℃以上高くなっている放熱環境 が赤外線熱計測に適している事が明らかとなっている ²⁾.よって、この条件を満たす日数が多い 11 月に撮影 を実施し、撮影時の温度環境の確認は坑内に設置した 温度計にて行っている.

(3)使用機器·測定状況

使用した赤外線サーモグラフィカメラ(以下,赤外 線カメラ)及びデジタルカメラを,**表-1**に示す.

(4) 計測方法

計測は,簡易トロの専用治具に固定した赤外線カメ ラおよびデジタルカメラを用いて,対象範囲全面の熱 画像および可視画像を分割撮影し,その画像を正対補 正後に接合した.計測装置を**写真-1**に示す.現地では 対象範囲を断面方向に4分割し,設定した画角毎にカ メラを固定し作業員が人力で簡易トロを押しながら、

—:計測対象部位

図-1 計測対象部位

写真-1 計測装置

図-2 浮きが検出された熱画像 と変状図の例(判定β₁)

表-1 機器の仕様

機材名称	仕様	数量
撮影システム	赤外線カメラ 検出素子:Insb 温度分解能:0.02℃以下@30℃ 素子数:640×512	1 台
	デジタルカメラ 撮影素子:36×24mm 画素数:5,760×3,840	1台
その他撮影機器	撮影架台	1台

時速 5~6km/時にて連続撮影を行った.また,赤外線熱 画像の撮影画素サイズは,5mm/画素とした.

3. 浮きの検出方法

熱画像上の温度分布から周囲が健全部に比べて低 温・もしくは高温の部分を浮きとして検出した.浮き が検出された熱画像と特全による変状図の例を図-2 に 示す.浮きと健全部との温度差は,浮き温度と浮き周

キーワード 非破壊調査,トンネル,赤外線熱計測,パッシブ法,温度環境,浮き,剥離 連絡先 〒101-0054 東京都千代田神田錦町2-5-1 (株)保全工学研究所 TEL03-5283-8111

-745

辺の健全部の温度の差とし、平均値として算出した.

4. 特別全般検査との比較

事前に特全において打音検査を行っていたため,打 音法により検出した浮きに対する赤外線計測で検出さ れた浮きの数を比較した.比較結果を**表-2**に示す.こ こで検出率とは打音による浮きに対して赤外線熱計測 による浮きが一致した箇所の割合とした.検出率は, 浮き判定 β_1 および補 β_1 (補修部の再劣化)に対して 100%, β_2 および補 β_2 (補修部の再劣化)に対して 56%,全体で 67%であった.このことから,変状の程 度が大きくなると,検出率は高くなっているといえる. また,赤外線熱計測で検出できなかった浮きは,温度 差が生じていなかったためであると考えられ,赤外線 熱画像でその箇所を確認したところ,これらのほとん どは,坑内大気温度とコンクリート表面温度の差が小 さく,平均値は 0.11°C(絶対値)であった.

5. 計測範囲の温度環境

計測範囲の側壁下部に設置した5箇所の温度計では、 全ての地点でコンクリート表面温度が坑内大気温度よ り 0.35℃以上高くなっており、撮影に適した条件であ ると判断された.しかし、赤外線熱計測では浮きが検 出できない箇所もあった. その原因として同じ断面で あっても, 坑内大気温度とコンクリート表面温度の差 は部位によって異なる可能性が考えられたため、赤外 線熱画像から上床、側壁上部、側壁下部について温度 差の確認を行った. ここで坑内大気温度は, 坑内の金 属部分の温度とした. 図−3 に、距離におけるそれぞれ の坑内大気温度とコンクリート表面温度差の分布を示 す. この結果から, 側壁の上部と下部においても 5k350m の換気口付近では坑内大気温度とコンクリート表面温 度の差がみられ,下部ほど坑内大気温度とコンクリー ト表面温度差が大きい. 上床では, 坑内大気温度がコ ンクリート表面温度より高い吸熱環境が多くみられる. また, 換気口付近では, 坑内大気温度がコンクリート 表面温度より急激に高く変化しており、距離・部位毎 に異なった温度環境である事が確認された.

6. まとめ

地下鉄営業線内における赤外線熱計測による浮きは、 打音検査による浮きに対して、判定β₁で100%、判定 β₂で56%、全体で67%の検出率であり、変状の程度が 大きいと検出率が向上する傾向にあった.

表-2 打音と赤外絼	熱計測によ	る浮き	の比較
------------	-------	-----	-----

浮き判定	打音による 浮き数	赤外線計測に よる 検出数	検出率		
β_{1}	5	5	100%		
β_2	18	10	56%		
補 β 1	7	7	100%		
補β2	18	10	56%		
合計	48	32	67%		
【浮き判定】の内容 β ₁ :密着度があり,列車運行・施設物等に支障する可能性が 高いもの β ₂ :密着度があり,列車運行・施設物等に支障する可能性が					

図-3 坑内大気温度とコンクリート表面温度差の分布

浮き非検出の主な原因は、坑内大気温度とコンクリート表面温度の差(絶対値)が小さいためであり、この差は距離、部位毎により異なっていた.

赤外線熱計測は、坑内大気温度およびコンクリート 表面温度の計測によって実施の可否及び時期を決定す ることが可能である.しかし、今回、部位・距離毎に 温度環境が異なっていることが判明したため、計測後 の赤外線熱画像により計測箇所の大気温度とコンクリ ート温度の差を確認する事で、検出の温度条件を明確 に判断し、適切な計測を行う事が可能となると考えら れる.

【参考文献】

- 川上・小西・久保・中山:現場での赤外線熱計測による地下鉄覆エコンクリートの浮き検出の可能性, 土木学会,地下空間シンポジウム論文・報告集,第 20巻,pp.73~84,2015
- 2) 久保・中山・小西・川上・村上・篠原:赤外線熱計 測によるトンネルコンクリートの浮き・剥離調査手 法の検討,土木学会,第69回土木学会年次大会, VI-490,2014-9