## 地盤連成 Pushover 解析による合成構造フーチングの検証

(株)大林組 正会員○齋藤 隆 正会員 天野 寿宣 首都高速道路(株) 正会員 松崎 久倫

RC 構造物の FEM 解析に関して数多くの実績がある

WCOMD を用いて、構造物一地盤連成系の2次元非線形

解析を行うとした. なお, WCOMD モデルの妥当性につ

## 1. はじめに

首都高速中央環状線の板橋・熊野町ジャンクション 間での渋滞緩和を目的とした拡幅工事において,新設 鋼製橋脚と増設フーチングを低土被り内で結合する ため,鋼製格子部材を用いて複合構造化した合成構造 フーチングという新しい手法が用いられている(図-1 参照). その採用に当たり,FEM 解析や載荷実験など によりフーチング部の地震時耐荷性能を確認してき たが<sup>1)~4)</sup>,施工ステップや周辺地盤の影響が未考慮 であったため,追加検討として構造物と地盤をモデル 化した静的プッシュオーバー解析を実施した.本稿で はその結果について報告する.



キーワード 合成構造フーチング,地盤連成解析,プッシュオーバー解析

連絡先 〒158-8502 東京都港区港南 2-15-2 品川インターシティ B棟 (株)大林組土木本部設計第一部 TEL03-5769-1305

-33-

1077

# いては載荷実験に対するシミュレーション解析を事 前に行い,確認している.

2. 検討条件

地盤連成の 2 次元非線形のプッシュオーバー解析 の条件を図-2 及び表-1 に示す.特徴としては,ダブ ルラケット型の新設橋脚による上部工荷重の受替え と、既設橋脚の撤去による載荷荷重の変動を模擬して 鉛直荷重を 3 段階で載荷した後に,L2 地震時荷重に 見立てた水平荷重の暫時増加を行うとした.

なお、地盤条件に関しては検討対象とした橋脚近 傍のボーリングデータから N 値や単位体積重量を設 定し(表-2)、初期せん断剛性 Go, せん断強度 Su な どの材料物性値は、N 値を用いて以下の(1)~(4)式に より算定し、大崎モデルのパラメターとすることと した.

| $G_0=11.76N^{0.8}\cdots$        | (1)        |
|---------------------------------|------------|
| $S_u=G_0/600 (N/mm^2)$          | :粘性土(2)    |
| $S_u=G_0/850 (N/mm^2)$          | :砂質粘性土…(3) |
| Su=G0/1100 (N/mm <sup>2</sup> ) | :砂質土(4)    |

| 表-1 解析条件(概要)                                                                   |                                                                                                                                                        |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 解析コード                                                                          | WCOMD                                                                                                                                                  |  |  |  |  |
| モデル化範囲(高さ)<br>モデル化範囲(幅)<br>モデル化範囲(奥行)<br>メッシュ分割                                | : 支持層まで<br>: 高さの5倍<br>: フーチング幅<br>: 500mm以下を目安                                                                                                         |  |  |  |  |
| 埋込鉄筋RC要素<br>地盤要素<br>鋼材要素(フーチング)<br>鋼材要素(橋脚)<br>ジョイント要素<br>境界要素(側面)<br>境界要素(底面) | <ul> <li>: 非線形(C=0.4:鉄筋バイリニア)</li> <li>: 非線形</li> <li>: 非線形(バイリニア)</li> <li>: 線形</li> <li>: RCフーチング・杭-地盤間</li> <li>: 2方向固定</li> <li>: 2方向固定</li> </ul> |  |  |  |  |
| 載荷ステップ(step1)<br>載荷ステップ(step2)                                                 | : 現状<br>杭・フーチング増設→橋脚増設→<br>: 支承受け替え→既設橋脚撤去→                                                                                                            |  |  |  |  |
| 載荷ステップ(step3)                                                                  | 新旧一体化→上部工拡幅<br>: 供用→L2地震時(Pushover)                                                                                                                    |  |  |  |  |

せん断弾性係数 地層名 記号 平均N值 層厚(m  $G_0(N/mm^2)$ 盛土層 В 沖積粘性土 20.47 0.03 LM 1.94 15 11.76 0.02 第1砂質十層 3.5 25 19 154.440 0.140 第2砂質十層 8.8: 19 220 424 0.200 To-s2 39 16 粘性土層 10.3 85.85 0.143 東京層 第3砂質土 1.8 19 188.16 0.17 砂礫土層 19 255.90 0.23 第4砂質土層 To-s4 5.5745 20 247.160 0.22 江戸川層 粘性土層 4020 Ed-c

タイベント発生の載荷レベル比較 主っ

| 部位および発生イベント |           | 載荷レベル(対L2荷重比率:%) |       |                 |
|-------------|-----------|------------------|-------|-----------------|
|             |           | 静的連成解析<br>WCOMD  | 載荷実験  | 実験事前解析<br>FINAL |
| フ           | 初ひび割れ     | 32               | 20    | 73              |
| 1 I         | 拘束筋初降伏    | 114              | 153   | 149             |
| チ           | 上側鉄筋初降伏   | 122              | 204   | 200             |
| ン           | 鋼製拡幅部材初降伏 | 131              | 243   | 225             |
| 7           | 下側鉄筋初降伏   | 138              | (未確認) | 229             |
| 橋脚          | 鋼製橋脚初降伏   | 118              | (未確認) | (弾性体)           |
| 既           | 初ひび割れ     | 22               |       |                 |
| 設           | 主筋初降伏     | 75               |       |                 |
| 杭           | せん断筋初降伏   | 111              |       |                 |
| 新           | 初ひび割れ     | 17               | (未降伏) | (弾性体)           |
| 設           | 主筋初降伏     | 122              | (未降伏) | (弾性体)           |
| 杭           | せん断筋初降伏   | 127              | (未降伏) | (弾性体)           |
|             | 最大荷重      |                  | 350   | 429             |

1609

140%

80%

60%

40%

20%

0%

200

載荷点変位(mn

**図-3** 荷重-変位グラフ

100

300

500

ê 120%

せん断力載荷レベル 100%

#### 3. 検討結果

プッシュオーバー 解析では載荷点の L2 地震時相当水平 荷重を 150%まで増 加させた. 解析結果 を表-3 および図 3~ 7に示す.

構造物単体での評価を目的とした載荷実験や事前 解析の結果と比較すると, 地盤連成解析においては各 部材の降伏が早く進行する結果となった.ただし,鋼 製格子部材などの合成構造フーチングに関わる部材 はL2 地震時相当荷重においても降伏しておらず,設 計における目標性能の確保が確認できた.また杭体の 設計結果により,既設杭はせん断破壊を生じると予想 していたが,変形図や鉄筋降伏図と合わせて考えると 杭頭は曲げ挙動が支配的であり, せん断破壊は生じな い可能性が高いという結果となった.

合成構造フーチングの内部の状態は,杭が鉛直荷重 を負担できなくなるよりも先に、L2 相当荷重の 115% で鋼部材底面での鉛直力負担が大きく変動しており, 内部損傷が大きく進行したものと考えられる.

## 4. まとめ

現行の合成構造フーチングのL2 地震に対する目標 性能は、地盤連成解析においても確保できていること が確認できた. 今後は, 内部損傷をさらに解明し, L2



地震時においても弾性設計を必要としない経済設計 が可能となるよう継続的に検討を進めていく.

### 参考文献

- 1) 村上裕真:板橋・熊野町ジャンクション間改良における合 成構造フーチングの構造概要,第68回土木学会年次講演会, PP517-518, 2013.9,
- 2)仲田宇史:板橋・熊野町ジャンクション間改良における合 成構造フーチングの設計,第69回土木学会年次講演会, PP79 -80, 2014.9,
- 3) 天野寿宣:板橋・熊野町ジャンクション間改良における合 成構造フーチングの橋軸方向載荷実験,第69回土木学会年 次講演会, PP81-82, 2014.9,
- 4) 伊原茂:板橋・熊野町ジャンクション間改良における合成 構造フーチングの橋軸直角方向載荷実験,第69回土木学会 年次講演会, PP83-84, 2014.9

地盤条件 表-2